enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.

  3. Graded poset - Wikipedia

    en.wikipedia.org/wiki/Graded_poset

    Sometimes a graded poset is called a ranked poset but that phrase has other meanings; see Ranked poset. A rank or rank level of a graded poset is the subset of all the elements of the poset that have a given rank value. [1] [2] Graded posets play an important role in combinatorics and can be visualized by means of a Hasse diagram.

  4. Glossary of order theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_order_theory

    A Scott domain is a partially ordered set which is a bounded complete algebraic cpo. Scott open. See Scott topology. Scott topology. For a poset P, a subset O is Scott-open if it is an upper set and all directed sets D that have a supremum in O have non-empty intersection with O. The set of all Scott-open sets forms a topology, the Scott topology.

  5. Posetal category - Wikipedia

    en.wikipedia.org/wiki/Posetal_category

    In mathematics, specifically category theory, a posetal category, or thin category, [1] is a category whose homsets each contain at most one morphism. [2] As such, a posetal category amounts to a preordered class (or a preordered set, if its objects form a set).

  6. Deviation of a poset - Wikipedia

    en.wikipedia.org/wiki/Deviation_of_a_poset

    The poset of positive integers has deviation 0: every descending chain is finite, so the defining condition for deviation is vacuously true. However, its opposite poset has deviation 1. Let k be an algebraically closed field and consider the poset of ideals of the polynomial ring k[x] in one variable. Since the deviation of this poset is the ...

  7. Ranked poset - Wikipedia

    en.wikipedia.org/wiki/Ranked_poset

    In mathematics, a ranked poset is a partially ordered set in which one of the following (non-equivalent) conditions hold: it is a graded poset, or; a poset with the property that for every element x, all maximal chains among those with x as greatest element have the same finite length, or; a poset in which all maximal chains have the same ...

  8. Tree (set theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_(set_theory)

    The partially ordered set on the right (in red) is not a tree because x 1 < x 3 and x 2 < x 3, but x 1 is not comparable to x 2 (dashed orange line). A tree is a partially ordered set (poset) (T, <) such that for each t ∈ T, the set {s ∈ T : s < t} is well-ordered by the relation <. In particular, each well-ordered set (T, <) is a tree.

  9. Incidence poset - Wikipedia

    en.wikipedia.org/wiki/Incidence_poset

    In mathematics, an incidence poset or incidence order is a type of partially ordered set that represents the incidence relation between vertices and edges of an undirected graph. The incidence poset of a graph G has an element for each vertex or edge in G ; in this poset, there is an order relation x ≤ y if and only if either x = y or x is a ...