enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laves graph - Wikipedia

    en.wikipedia.org/wiki/Laves_graph

    The regular skew polyhedron onto which the Laves graph can be inscribed. The edges of the Laves graph are diagonals of some of the squares of this polyhedral surface. As Coxeter (1955) describes, the vertices of the Laves graph can be defined by selecting one out of every eight points in the three-dimensional integer lattice, and forming their nearest neighbor graph.

  3. Rhombille tiling - Wikipedia

    en.wikipedia.org/wiki/Rhombille_tiling

    In geometry, the rhombille tiling, [1] also known as tumbling blocks, [2] reversible cubes, or the dice lattice, is a tessellation of identical 60° rhombi on the Euclidean plane. Each rhombus has two 60° and two 120° angles; rhombi with this shape are sometimes also called diamonds. Sets of three rhombi meet at their 120° angles, and sets ...

  4. Lattice (group) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(group)

    A lattice in the sense of a 3-dimensional array of regularly spaced points coinciding with e.g. the atom or molecule positions in a crystal, or more generally, the orbit of a group action under translational symmetry, is a translation of the translation lattice: a coset, which need not contain the origin, and therefore need not be a lattice in ...

  5. Wang tile - Wikipedia

    en.wikipedia.org/wiki/Wang_tile

    Example of Wang tessellation with 13 tiles. In 1961, Wang conjectured that if a finite set of Wang tiles can tile the plane, then there also exists a periodic tiling, which, mathematically, is a tiling that is invariant under translations by vectors in a 2-dimensional lattice. This can be likened to the periodic tiling in a wallpaper pattern ...

  6. Relativity (M. C. Escher) - Wikipedia

    en.wikipedia.org/wiki/Relativity_(M._C._Escher)

    Relativity is a lithograph print by the Dutch artist M. C. Escher, first printed in December 1953.The first version of this work was a woodcut made earlier that same year. [1]

  7. Unimodular lattice - Wikipedia

    en.wikipedia.org/wiki/Unimodular_lattice

    In geometry and mathematical group theory, a unimodular lattice is an integral lattice of determinant 1 or −1. For a lattice in n-dimensional Euclidean space, this is equivalent to requiring that the volume of any fundamental domain for the lattice be 1. The E 8 lattice and the Leech lattice are two famous examples.

  8. Bravais lattice - Wikipedia

    en.wikipedia.org/wiki/Bravais_lattice

    The seven lattice systems and their Bravais lattices in three dimensions. In geometry and crystallography, a Bravais lattice, named after Auguste Bravais (), [1] is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by

  9. Quasicrystal - Wikipedia

    en.wikipedia.org/wiki/Quasicrystal

    Additionally in the 2010s, two-dimensional molecular quasicrystals were discovered, driven by intermolecular interactions [43] and interface-interactions. [44] In 2018, chemists from Brown University announced the successful creation of a self-constructing lattice structure based on a strangely shaped quantum dot.