Search results
Results from the WOW.Com Content Network
SHA-1: A 160-bit hash function which resembles the earlier MD5 algorithm. This was designed by the National Security Agency (NSA) to be part of the Digital Signature Algorithm . Cryptographic weaknesses were discovered in SHA-1, and the standard was no longer approved for most cryptographic uses after 2010.
shasum is a Perl program to calculate any of SHA-1, 224, 256, 384, 512 hashes. [7] It is part of the ActivePerl distribution. sha3sum is a similarly named program that calculates SHA-3, HAKE, RawSHAKE, and Keccak functions. [8] The <hash>sum naming convention is also used by the BLAKE team with b2sum and b3sum, by the program tthsum, and many ...
Replacing SHA-1 is urgent where it is used for digital signatures. All major web browser vendors ceased acceptance of SHA-1 SSL certificates in 2017. [15] [9] [4] In February 2017, CWI Amsterdam and Google announced they had performed a collision attack against SHA-1, publishing two dissimilar PDF files which produced the same SHA-1 hash.
Hash rate is usually measured in hashes per second, and the higher the hash rate is, the faster your mining hardware can mine crypto. Let’s imagine a The post What is a hash rate calculator ...
hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling ...
Collisions against the full SHA-1 algorithm can be produced using the shattered attack and the hash function should be considered broken. SHA-1 produces a hash digest of 160 bits (20 bytes). Documents may refer to SHA-1 as just "SHA", even though this may conflict with the other Secure Hash Algorithms such as SHA-0, SHA-2, and SHA-3.
A hash function that allows only certain table sizes or strings only up to a certain length, or cannot accept a seed (i.e. allow double hashing) is less useful than one that does. [citation needed] A hash function is applicable in a variety of situations. Particularly within cryptography, notable applications include: [8]
The following tables compare general and technical information for a number of cryptographic hash functions. See the individual functions' articles for further information. This article is not all-inclusive or necessarily up-to-date. An overview of hash function security/cryptanalysis can be found at hash function security summary.