enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dopamine receptor - Wikipedia

    en.wikipedia.org/wiki/Dopamine_receptor

    Dopamine receptors are implicated in many neurological processes, including motivational and incentive salience, cognition, memory, learning, and fine motor control, as well as modulation of neuroendocrine signaling. Abnormal dopamine receptor signaling and dopaminergic nerve function is implicated in several neuropsychiatric disorders. [2]

  3. Dopaminergic pathways - Wikipedia

    en.wikipedia.org/wiki/Dopaminergic_pathways

    The dopamine neurons of the dopaminergic pathways synthesize and release the neurotransmitter dopamine. [2] [3] Enzymes tyrosine hydroxylase and dopa decarboxylase are required for dopamine synthesis. [4] These enzymes are both produced in the cell bodies of dopamine neurons. Dopamine is stored in the cytoplasm and vesicles in axon terminals.

  4. Dopamine - Wikipedia

    en.wikipedia.org/wiki/Dopamine

    At the earliest stage, genetic differences that alter the expression of dopamine receptors in the brain can predict whether a person will find stimulants appealing or aversive. [115] Consumption of stimulants produces increases in brain dopamine levels that last from minutes to hours. [104]

  5. Mesolimbic pathway - Wikipedia

    en.wikipedia.org/wiki/Mesolimbic_pathway

    The mesolimbic pathway and its positioning in relation to the other dopaminergic pathways. The mesolimbic pathway is a collection of dopaminergic (i.e., dopamine-releasing) neurons that project from the ventral tegmental area (VTA) to the ventral striatum, which includes the nucleus accumbens (NAcc) and olfactory tubercle. [9]

  6. Dopaminergic - Wikipedia

    en.wikipedia.org/wiki/Dopaminergic

    Dopamine receptor antagonists can be divided into D 1-like receptor antagonists and D 2-like receptor antagonists. Ecopipam is an example of a D 1 -like receptor antagonist. At low doses, dopamine D 2 and D 3 receptor antagonists can preferentially block presynaptic dopamine D 2 and D 3 autoreceptors and thereby increase dopamine levels and ...

  7. Ventral tegmental area - Wikipedia

    en.wikipedia.org/wiki/Ventral_tegmental_area

    The dopamine reward circuitry in the human brain involves two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. First, the posteromedial VTA and central linear raphe cells selectively project to the ventromedial striatum , which includes the medial olfactory tubercle and the medial NAC shell .

  8. Mesocortical pathway - Wikipedia

    en.wikipedia.org/wiki/Mesocortical_pathway

    It is one of the four major dopamine pathways in the brain. It is essential to the normal cognitive function of the dorsolateral prefrontal cortex (part of the frontal lobe), and is thought to be involved in cognitive control, motivation, and emotional response. [1] [2]

  9. Nigrostriatal pathway - Wikipedia

    en.wikipedia.org/wiki/Nigrostriatal_pathway

    The substantia nigra is located in the ventral midbrain of each hemisphere. It has two distinct parts, the pars compacta (SNc) and the pars reticulata (SNr). The pars compacta contains dopaminergic neurons from the A9 cell group that forms the nigrostriatal pathway that, by supplying dopamine to the striatum, relays information to the basal ganglia.