enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Flow measurement - Wikipedia

    en.wikipedia.org/wiki/Flow_measurement

    This depth is converted to a flow rate according to a theoretical formula of the form = where is the flow rate, is a constant, is the water level, and is an exponent which varies with the device used; or it is converted according to empirically derived level/flow data points (a "flow curve"). The flow rate can then be integrated over time into ...

  3. Mass flow meter - Wikipedia

    en.wikipedia.org/wiki/Mass_flow_meter

    A mass flow meter of the Coriolis type. A mass flow meter, also known as an inertial flow meter, is a device that measures mass flow rate of a fluid traveling through a tube. The mass flow rate is the mass of the fluid traveling past a fixed point per unit time.

  4. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    Flow velocity vector field u = (,) m s −1 [L][T] −1: Velocity pseudovector field ω = s ... The Cambridge Handbook of Physics Formulas. Cambridge University Press.

  5. Positive displacement meter - Wikipedia

    en.wikipedia.org/wiki/Positive_displacement_meter

    A positive displacement meter is a type of flow meter that requires fluid to mechanically displace components in the meter in order for flow measurement. Positive displacement (PD) flow meters measure the volumetric flow rate of a moving fluid or gas by dividing the media into fixed, metered volumes (finite increments or volumes of the fluid).

  6. Volumetric flow rate - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flow_rate

    The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .

  7. Mass flux - Wikipedia

    en.wikipedia.org/wiki/Mass_flux

    Mathematically, mass flux is defined as the limit =, where = = is the mass current (flow of mass m per unit time t) and A is the area through which the mass flows.. For mass flux as a vector j m, the surface integral of it over a surface S, followed by an integral over the time duration t 1 to t 2, gives the total amount of mass flowing through the surface in that time (t 2 − t 1): = ^.

  8. Mass flow rate - Wikipedia

    en.wikipedia.org/wiki/Mass_flow_rate

    The area required to calculate the mass flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface, e.g. for substances passing through a filter or a membrane, the real surface is the (generally curved) surface area of the filter, macroscopically - ignoring the area spanned by the holes in the filter/membrane ...

  9. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    The flow is proportional to the absolute inlet pressure, so the flow in scfm would equal the C v flow coefficient if the inlet pressure were reduced to 2 psia and the outlet were connected to a vacuum with less than 1 psi absolute pressure (1.0 scfm when C v = 1.0, 2 psia input).