Search results
Results from the WOW.Com Content Network
An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.
An elliptic equation can mean: The equation of an ellipse; An elliptic curve, describing the relationships between invariants of an ellipse; A differential equation with an elliptic operator; An elliptic partial differential equation
Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution respectively. Other terms used are ellipticity , or oblateness . The usual notation for flattening is f {\displaystyle f} and its definition in terms of the semi-axes a {\displaystyle a} and b {\displaystyle b} of ...
From this equation one gets the following properties of the evolute: At points with ′ = the evolute is not regular. That means: at points with maximal or minimal curvature (vertices of the given curve) the evolute has cusps. (See the diagrams of the evolutes of the parabola, the ellipse, the cycloid and the nephroid.)
A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...
The 1-ellipse is the circle, and the 2-ellipse is the classic ellipse. Both are algebraic curves of degree 2. For any number n of foci, the n-ellipse is a closed, convex curve. [2]: (p. 90) The curve is smooth unless it goes through a focus. [5]: p.7 The n-ellipse is in general a subset of the points satisfying a particular algebraic equation. [5]:
An ellipsograph is a mechanism that generates the shape of an ellipse. One common form of ellipsograph is known as the trammel of Archimedes . [ 1 ] It consists of two shuttles which are confined to perpendicular channels or rails and a rod which is attached to the shuttles by pivots at adjustable positions along the rod.
Consider the ellipse with equation given by: + =, where a is the semi-major axis and b is the semi-minor axis. For a point on the ellipse, P = P(x, y), representing the position of an orbiting body in an elliptical orbit, the eccentric anomaly is the angle E in the