Search results
Results from the WOW.Com Content Network
Polyominoes: Puzzles, Patterns, Problems, and Packings is a mathematics book on polyominoes, the shapes formed by connecting some number of unit squares edge-to-edge. It was written by Solomon Golomb , and is "universally regarded as a classic in recreational mathematics ". [ 1 ]
The curiously recurring template pattern (CRTP) is an idiom, originally in C++, in which a class X derives from a class template instantiation using X itself as a template argument. [1] More generally it is known as F-bound polymorphism , and it is a form of F -bounded quantification .
C mathematical operations are a group of functions in the standard library of the C programming language implementing basic mathematical functions. [1] [2] All functions use floating-point numbers in one manner or another. Different C standards provide different, albeit backwards-compatible, sets of functions.
The construction and discovery of schizophrenic numbers was prompted by a claim (posted in the Usenet newsgroup sci.math) that the digits of an irrational number chosen at random would not be expected to display obvious patterns in the first 100 digits. It was said that if such a pattern were found, it would be irrefutable proof of the ...
Mathematics: Random numbers are also employed where their use is mathematically important, such as sampling for opinion polls and for statistical sampling in quality control systems. Computational solutions for some types of problems use random numbers extensively, such as in the Monte Carlo method and in genetic algorithms .
Rule 30: Wolfram's Pseudo-random Bit Generator. Recipe 32 at David Griffeath's Primordial Soup Kitchen. Repeating Rule 30 patterns. A list of patterns that, when repeated to fill the cells of a Rule 30 automaton, repeat themselves after finitely many time steps. Frans Faase, 2003. Archived from the Original on 2013-08-08; Paving Mosaic Fractal ...
Start by labeling p 1, p 2 and p 3 as the corners of the Sierpiński triangle, and a random point v 1. Set v n+1 = 1 / 2 (v n + p r n), where r n is a random number 1, 2 or 3. Draw the points v 1 to v ∞. If the first point v 1 was a point on the Sierpiński triangle, then all the points v n lie on the Sierpiński triangle.
The raw (or prior) probability that the pattern of bits is random (has no pattern) is . Each program that produces the sequence of bits, but is shorter than the n is a theory/pattern about the bits with a probability of 2 − k {\displaystyle 2^{-k}} where k is the length of the program.