Search results
Results from the WOW.Com Content Network
Mitochondrial uncoupling protein 3 (UCP3) is a members of the larger family of mitochondrial anion carrier proteins (MACP). UCPs facilitate the transfer of anions from the inner to the outer mitochondrial membrane and transfer of protons from the outer to the inner mitochondrial membrane, reducing the mitochondrial membrane potential in mammalian cells.
They also reduce the mitochondrial membrane potential in mammalian cells, which reduces production of reactive oxygen species (ROS). In contrast to UCP1 and UCP3, which are primarily expressed in adipose and smooth muscle, UCP2 is expressed on many different tissues [ 6 ] including the kidney, liver, GI tract, brain, and skeletal muscle.
The mitochondrial permeability transition pore (mPTP or MPTP; also referred to as PTP, mTP or MTP) is a protein that is formed in the inner membrane of the mitochondria under certain pathological conditions such as traumatic brain injury and stroke.
Structure of the human uncoupling protein UCP1. An uncoupling protein (UCP) is a mitochondrial inner membrane protein that is a regulated proton channel or transporter.An uncoupling protein is thus capable of dissipating the proton gradient generated by NADH-powered pumping of protons from the mitochondrial matrix to the mitochondrial intermembrane space.
In essence, the Goldman formula expresses the membrane potential as a weighted average of the reversal potentials for the individual ion types, weighted by permeability. (Although the membrane potential changes about 100 mV during an action potential, the concentrations of ions inside and outside the cell do not change significantly.
[1] [2] There is debate as to whether or not this channel is expressed in the cell surface membrane. [3] [4] [5] This major protein of the outer mitochondrial membrane of eukaryotes forms a voltage-dependent anion-selective channel (VDAC) that behaves as a general diffusion pore for small hydrophilic molecules.
The mitochondrial theory of ageing has two varieties: free radical and non-free radical. The first is one of the variants of the free radical theory of ageing. It was formulated by J. Miquel and colleagues in 1980 [ 1 ] and was developed in the works of Linnane and coworkers (1989). [ 2 ]
This membrane potential is ultimately what allows for the mitochondria to generate large quantities of ATP. [ 17 ] Protons being pumped from the mitochondrial matrix into the intermembrane space as the electron transport chain runs, lowering the pH of the intermembrane space.