Search results
Results from the WOW.Com Content Network
The term is also used, even more specifically, to mean a "monochromatic" or sinusoidal plane wave: a travelling plane wave whose profile () is a sinusoidal function. That is, (,) = (() +) The parameter , which may be a scalar or a vector, is called the amplitude of the wave; the scalar coefficient is its "spatial frequency"; and the scalar is its "phase shift".
In physics, a sinusoidal plane wave is a special case of plane wave: a field whose value varies as a sinusoidal function of time and of the distance from some fixed plane. It is also called a monochromatic plane wave , with constant frequency (as in monochromatic radiation ).
A plane wave is an important mathematical idealization where the disturbance is identical along any (infinite) plane normal to a specific direction of travel. Mathematically, the simplest wave is a sinusoidal plane wave in which at any point the field experiences simple harmonic motion at one frequency.
The wavefronts of a traveling plane wave in three-dimensional space. In mathematics and physics , a traveling plane wave [ 1 ] is a special case of plane wave , namely a field whose evolution in time can be described as simple translation of its values at a constant wave speed c {\displaystyle c} , along a fixed direction of propagation n → ...
From the quadratic velocity term = (+) = can be seen that there are two waves travelling in opposite directions + and are possible, hence results the designation “two-way wave equation”. It can be shown for plane longitudinal wave propagation that the synthesis of two one-way wave equations leads to a general two-way wave equation.
In physics, the plane-wave expansion expresses a plane wave as a linear combination of spherical waves: = = (+) (^ ^), where i is the imaginary unit , k is a wave vector of length k ,
In physics and many other areas of science and engineering the intensity or flux of radiant energy is the power transferred per unit area, where the area is measured on the plane perpendicular to the direction of propagation of the energy. [a] In the SI system, it has units watts per square metre (W/m 2), or kg⋅s −3 in base units.
Comparing our exact solution with the usual monochromatic electromagnetic plane wave as treated in special relativity (i.e., as a wave in flat spacetime, neglecting the gravitational effects of the energy of the electromagnetic field), one sees that the striking new feature in general relativity is the expansion and collapse cycles experienced ...