Search results
Results from the WOW.Com Content Network
Oxalate (systematic IUPAC name: ethanedioate) is an anion with the chemical formula C 2 O 2− 4. This dianion is colorless. It occurs naturally, including in some foods. It forms a variety of salts, for example sodium oxalate (Na 2 C 2 O 4), and several esters such as dimethyl oxalate ((CH 3) 2 C 2 O 4). It is a conjugate base of oxalic acid.
It occurs naturally in many foods. Excessive ingestion of oxalic acid or prolonged skin contact can be dangerous. Oxalic acid has much greater acid strength than acetic acid. It is a reducing agent [9] and its conjugate bases hydrogen oxalate (HC 2 O − 4) and oxalate (C 2 O 2− 4) are chelating agents for metal cations.
Oxalate oxidase (Enzyme Commission number EC 1.2.3.4 [2] )occurs mainly in plants. It can degrade oxalic acid into carbon dioxide and hydrogen peroxide. [3]Oxalate decarboxylase (OXDC,EC 4.1.1.2) is a kind of oxalate degrading enzyme containing Mn 2+, [4] found mainly in fungi or some bacteria.
In enzymology, an oxalate oxidase (EC 1.2.3.4) is an oxalate degrading enzyme that catalyzes the chemical reaction: oxalate + O 2 + 2 H + ⇌ {\displaystyle \rightleftharpoons } 2 CO 2 + H 2 O 2 The 3 substrates of this enzyme are oxalate , O 2 , and H + , whereas its two products are CO 2 and H 2 O 2 .
The oxidation states are also maintained in articles of the elements (of course), and systematically in the table {{Infobox element/symbol-to-oxidation-state}}
Oxalyl-CoA decarboxylase is extremely important for the elimination of ingested oxalates found in human foodstuffs like coffee, tea, and chocolate, [2] and the ingestion of such foods in the absence of Oxalobacter formigenes in the gut can result in kidney disease or even death as a result of oxalate poisoning. [3]
A number of biochemical pathways for calcium oxalate biomineralization in plants have been proposed. Among these is the cleavage of isocitrate, the hydrolysis of oxaloacetate, glycolate/glyoxylate oxidation, and/or oxidative cleavage of L-ascorbic acid. [9] The cleavage of ascorbic acid appears to be the most studied pathway.
Many common phenomena can be attributed to autoxidation, such as food going rancid, [2] the 'drying' of varnishes and paints, and the perishing of rubber. [3] It is also an important concept in both industrial chemistry and biology. [4] Autoxidation is therefore a fairly broad term and can encompass examples of photooxygenation and catalytic ...