enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum a posteriori estimation - Wikipedia

    en.wikipedia.org/.../Maximum_a_posteriori_estimation

    An estimation procedure that is often claimed to be part of Bayesian statistics is the maximum a posteriori (MAP) estimate of an unknown quantity, that equals the mode of the posterior density with respect to some reference measure, typically the Lebesgue measure.

  3. Checking whether a coin is fair - Wikipedia

    en.wikipedia.org/wiki/Checking_whether_a_coin_is...

    With the uniform prior, the posterior probability distribution f(r | H = 7,T = 3) achieves its peak at r = h / (h + t) = 0.7; this value is called the maximum a posteriori (MAP) estimate of r. Also with the uniform prior, the expected value of r under the posterior distribution is

  4. Laplace's approximation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_approximation

    where ^ is the location of a mode of the joint target density, also known as the maximum a posteriori or MAP point and is the positive definite matrix of second derivatives of the negative log joint target density at the mode = ^. Thus, the Gaussian approximation matches the value and the log-curvature of the un-normalised target density at the ...

  5. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    A maximum likelihood estimator coincides with the most probable Bayesian estimator given a uniform prior distribution on the parameters. Indeed, the maximum a posteriori estimate is the parameter θ that maximizes the probability of θ given the data, given by Bayes' theorem:

  6. Posterior probability - Wikipedia

    en.wikipedia.org/wiki/Posterior_probability

    From a given posterior distribution, various point and interval estimates can be derived, such as the maximum a posteriori (MAP) or the highest posterior density interval (HPDI). [4] But while conceptually simple, the posterior distribution is generally not tractable and therefore needs to be either analytically or numerically approximated. [5]

  7. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    The EM method was modified to compute maximum a posteriori (MAP) estimates for Bayesian inference in the original paper by Dempster, Laird, and Rubin. Other methods exist to find maximum likelihood estimates, such as gradient descent, conjugate gradient, or variants of the Gauss–Newton algorithm. Unlike EM, such methods typically require the ...

  8. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...

  9. Bayes estimator - Wikipedia

    en.wikipedia.org/wiki/Bayes_estimator

    It follows that the Bayes estimator δ n under MSE is asymptotically efficient. Another estimator which is asymptotically normal and efficient is the maximum likelihood estimator (MLE). The relations between the maximum likelihood and Bayes estimators can be shown in the following simple example.