Search results
Results from the WOW.Com Content Network
The multiplicative (or geometric) discrete wavelet transform [26] is a variant that applies to an observation model = involving interactions of a positive regular function and a multiplicative independent positive noise, with =.
Daubechies wavelets are widely used in solving a broad range of problems, e.g. self-similarity properties of a signal or fractal problems, signal discontinuities, etc. The Daubechies wavelets are not defined in terms of the resulting scaling and wavelet functions; in fact, they are not possible to write down in closed form.
Coiflets are discrete wavelets designed by Ingrid Daubechies, at the request of Ronald Coifman, to have scaling functions with vanishing moments. The wavelet is near symmetric, their wavelet functions have N / 3 {\displaystyle N/3} vanishing moments and scaling functions N / 3 − 1 {\displaystyle N/3-1} , and has been used in many applications ...
A wavelet is a mathematical function used to divide a given function or continuous-time signal into different scale components. Usually one can assign a frequency range to each scale component. Each scale component can then be studied with a resolution that matches its scale. A wavelet transform is the representation of a function by wavelets.
Discrete wavelet transform has been successfully applied for the compression of electrocardiograph (ECG) signals [6] In this work, the high correlation between the corresponding wavelet coefficients of signals of successive cardiac cycles is utilized employing linear prediction. Wavelet compression is not effective for all kinds of data.
The predict step calculates the wavelet function in the wavelet transform. This is a high-pass filter. The update step calculates the scaling function, which results in a smoother version of the data. As mentioned above, the lifting scheme is an alternative technique for performing the DWT using biorthogonal wavelets.
The discrete wavelet transform is extended to the multidimensional case using the tensor product of well known 1-D wavelets. In 2-D for example, the tensor product space for 2-D is decomposed into four tensor product vector spaces [3] as
The Discrete Wavelet Transform (DWT) is a pivotal algorithm in multiresolution analysis, ... Defining another function, known as mother wavelet or just the wavelet