Search results
Results from the WOW.Com Content Network
First, the statistician may remove the suspected outliers from the data set and then use the arithmetic mean to estimate the location parameter. Second, the statistician may use a robust statistic, such as the median statistic. Peirce's criterion is a statistical procedure for eliminating outliers.
For instance, the 10% trimmed mean is the average of the 5th to 95th percentile of the data, while the 90% winsorized mean sets the bottom 5% to the 5th percentile, the top 5% to the 95th percentile, and then averages the data. Winsorizing thus does not change the total number of values in the data set, N.
Then they can create or use a feature selection or dimensionality reduction algorithm to remove samples or features from the data set if they deem it necessary. One example of such methods is the interquartile range method, used to remove outliers in a data set by calculating the standard deviation of a feature or occurrence.
The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...
May 2015) (Learn how and when to remove this message) In statistics , Dixon's Q test , or simply the Q test , is used for identification and rejection of outliers . This assumes normal distribution and per Robert Dean and Wilfrid Dixon, and others, this test should be used sparingly and never more than once in a data set.
The outliers in the speed-of-light data have more than just an adverse effect on the mean; the usual estimate of scale is the standard deviation, and this quantity is even more badly affected by outliers because the squares of the deviations from the mean go into the calculation, so the outliers' effects are exacerbated.
The strength of this method lies in the fact that it takes into account a data set's standard deviation, average and provides a statistically determined rejection zone; thus providing an objective method to determine if a data point is an outlier. [citation needed] [23] How it works: First, a data set's average is determined. Next the absolute ...
This is an important technique in the detection of outliers. It is among several named in honor of William Sealey Gosset , who wrote under the pseudonym "Student" (e.g., Student's distribution ). Dividing a statistic by a sample standard deviation is called studentizing , in analogy with standardizing and normalizing .