Ad
related to: parallelogram examples with angle measures
Search results
Results from the WOW.Com Content Network
In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure.
A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the sum of the squares of the diagonals (the parallelogram law).
The brown parallelogram is the overlapping area of the two triangles. Upon close inspection one can notice that the triangles of the dissected shape are not identical to the triangles in the rectangle. The length of the shorter side at the right angle measures 2 units in the original shape but only 1.8 units in the rectangle.
Rhomboid: a parallelogram in which adjacent sides are of unequal lengths, and some angles are oblique (equiv., having no right angles). Informally: "a pushed-over oblong". Not all references agree; some define a rhomboid as a parallelogram that is not a rhombus. [4] Rectangle: all four angles are right angles (equiangular). An equivalent ...
Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.
For a given parallelogram consider an arbitrary inner parallelogram having as a diagonal as well. Furthermore there are two uniquely determined parallelograms G F H D {\displaystyle GFHD} and I B J F {\displaystyle IBJF} the sides of which are parallel to the sides of the outer parallelogram and which share the vertex F {\displaystyle F} with ...
Credit - Top row: Marco Di Marco—AP; Sofiia Gatilova—Reuters; Leo Correa–AP; Amr Alfiky—Reuters; John Moore—Getty Images; Bottom row: Anna Moneymaker—Getty Images; Jerome Brouillet ...
Any non-self-crossing quadrilateral with exactly one axis of symmetry must be either an isosceles trapezoid or a kite. [5] However, if crossings are allowed, the set of symmetric quadrilaterals must be expanded to include also the crossed isosceles trapezoids, crossed quadrilaterals in which the crossed sides are of equal length and the other sides are parallel, and the antiparallelograms ...
Ad
related to: parallelogram examples with angle measures