Search results
Results from the WOW.Com Content Network
Polyglutamic acid (PGA) is a polymer of the amino acid glutamic acid (GA). Depending on where the individual monomers connect, PGA can be gamma PGA (poly-γ-glutamic acid, γ-PGA), the form where the peptide bonds are between the amino group of GA and the carboxyl group at the end of the GA side chain, or alpha PGA, the form where the alpha-carboxyl is used to form the peptide bond.
Peptide bond formation via dehydration reaction. When two amino acids form a dipeptide through a peptide bond, [1] it is a type of condensation reaction. [2] In this kind of condensation, two amino acids approach each other, with the non-side chain (C1) carboxylic acid moiety of one coming near the non-side chain (N2) amino moiety of the other.
The N-terminal "ring" can be from 7 to 9 amino acids long and is formed by an isopeptide bond between the N-terminal amine of the first amino acid of the peptide and the carboxylate side chain of an aspartate or glutamate residue. The C-terminal "tail" ranges from 7 to 15 amino acids in length. [15]
Amide bonds, and thus isopeptide bonds, are stabilized by resonance (electron delocalization) between the carbonyl oxygen, the carbonyl carbon, and the nitrogen atom. The bond strength of an isopeptide bond is similar to that of a peptide due to the similar bonding type. The bond strength of a peptide bond is around 300 kJ/mol, or about 70 kcal ...
Peptides are short chains of amino acids linked by peptide bonds. [1] [2] A polypeptide is a longer, continuous, unbranched peptide chain. [3] Polypeptides that have a molecular mass of 10,000 Da or more are called proteins. [4] Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides.
In plants, the shikimate pathway first leads to the formation of chorismate, which is the precursor of phenylalanine, tyrosine, and tryptophan.These aromatic amino acids are the precursors of many secondary metabolites, all essential to a plant's biological functions, such as the hormones salicylate and auxin.
The main substrates of chymotrypsin are peptide bonds in which the amino acid N-terminal to the bond is a tryptophan, tyrosine, phenylalanine, or leucine. Like many proteases, chymotrypsin also hydrolyses amide bonds in vitro, a virtue that enabled the use of substrate analogs such as N-acetyl-L-phenylalanine p-nitrophenyl amide for enzyme assays.
Due to the ring formation connected to the beta carbon, the ψ and φ angles about the peptide bond have fewer allowable degrees of rotation. As a result, it is often found in "turns" of proteins as its free entropy (Δ S ) is not as comparatively large to other amino acids and thus in a folded form vs. unfolded form, the change in entropy is ...