Search results
Results from the WOW.Com Content Network
The kinetic theory of gases is a simple classical model ... Kinetic theory of matter ... the energy added to the system per gas particle kinetic degree of ...
Kinetic theory may refer to: Kinetic theory of matter: A general account of the properties of matter, including solids liquids and gases, based around the idea that heat or temperature is a manifestation of atoms and molecules in constant agitation. Kinetic theory of gases, an account of gas properties in terms of motion and interaction of ...
And since equipartition of energy applies, the kinetic energy of the Brownian particle, /, will be equal, on the average, to the kinetic energy of the surrounding fluid particle, /. In 1906 Smoluchowski published a one-dimensional model to describe a particle undergoing Brownian motion. [23]
There are two common approaches to kinetic description of a plasma. One is based on representing the smoothed distribution function on a grid in velocity and position. The other, known as the particle-in-cell (PIC) technique, includes kinetic information by following the trajectories of a large number of individual particles. Kinetic models are ...
The hybrid model is a combination of fluid and kinetic models, treating some components of the system as a fluid, and others kinetically. The hybrid model is sometimes applied in space physics , when the simulation domain exceeds thousands of ion gyroradius scales, making it impractical to solve kinetic equations for electrons.
Le Sage's theory of gravitation is a kinetic theory of gravity originally proposed by Nicolas Fatio de Duillier in 1690 and later by Georges-Louis Le Sage in 1748. The theory proposed a mechanical explanation for Newton's gravitational force in terms of streams of tiny unseen particles (which Le Sage called ultra-mundane corpuscles) impacting all material objects from all directions.
Matter waves are a central part of the theory of quantum mechanics, being half of wave–particle duality. At all scales where measurements have been practical, matter exhibits wave -like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave.
From the kinetic theory of gases, [20] thermal conductivity of principal carrier i (p, e, f and ph) is =,, where n i is the carrier density and the heat capacity is per carrier, u i is the carrier speed and λ i is the mean free path (distance traveled by carrier before an scattering event). Thus, the larger the carrier density, heat capacity ...