Search results
Results from the WOW.Com Content Network
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Caldrini (1491) is the earliest printed example of long division, known as the Danda method in medieval Italy, [4] and it became more practical with the introduction of decimal notation for fractions by Pitiscus (1608). The specific algorithm in modern use was introduced by Henry Briggs c. 1600. [5]
The similarity between Euclidean division for integers and that for polynomials motivates the search for the most general algebraic setting in which Euclidean division is valid. The rings for which such a theorem exists are called Euclidean domains, but in this generality, uniqueness of the quotient and remainder is not guaranteed. [8]
The division with remainder or Euclidean division of two natural numbers provides an integer quotient, which is the number of times the second number is completely contained in the first number, and a remainder, which is the part of the first number that remains, when in the course of computing the quotient, no further full chunk of the size of ...
In quotitive division one asks "how many parts are there?" while in partitive division one asks "what is the size of each part?" In general, a quotient = /, where Q, N, and D are integers or rational numbers, can be conceived of in either of 2 ways: Quotition: "How many parts of size D must be added to get a sum of N?"
The integers s and t can be calculated from the quotients q 0, q 1, etc. by reversing the order of equations in Euclid's algorithm. [59] Beginning with the next-to-last equation, g can be expressed in terms of the quotient q N−1 and the two preceding remainders, r N−2 and r N−3: g = r N−1 = r N−3 − q N−1 r N−2 .
The bottom line Most vitamins are considered safe for up to two years past their expiration date (unless they contain mold), but may become less potent over time.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.