Search results
Results from the WOW.Com Content Network
A Cabtaxi number is the smallest positive number that can be expressed as a sum of two integer cubes in n ways, allowing the cubes to be negative or zero as well as positive. The smallest cabtaxi number after Cabtaxi(1) = 0, is Cabtaxi(2) = 91, [ 5 ] expressed as:
The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 2 3 = 8 or (x + 1) 3. The cube is also the number multiplied by its square: n 3 = n × n 2 = n × n × n. The cube function is the function x ↦ x 3 (often denoted y = x 3) that maps a number to its cube. It is an odd function, as
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin( α + β ) = sin α cos β + cos α sin ...
Cube root of 2 1.25992 10498 94873 16476 [Mw 6] ... where f n = f n−1 ± f n−2, where the signs + or − are chosen at random with equal probability 1/2 ...
The Fermat cubic, in which the sum of three cubes equals another cube, has a general solution. The power sum symmetric polynomial is a building block for symmetric polynomials. The sum of the reciprocals of all perfect powers including duplicates (but not including 1) equals 1.
1729 can be expressed as a sum of two positive cubes in two ways, illustrated geometrically. 1729 is also known as Ramanujan number or Hardy–Ramanujan number, named after an anecdote of the British mathematician G. H. Hardy when he visited Indian mathematician Srinivasa Ramanujan who was ill in a hospital.
Some others like T. L. Heath, who translated all of Archimedes's works, disagree, putting forward evidence that Archimedes really solved cubic equations using intersections of two conics, but also discussed the conditions where the roots are 0, 1 or 2. [10] Graph of the cubic function f(x) = 2x 3 − 3x 2 − 3x + 2 = (x + 1) (2x − 1) (x − 2)
is the number of collisions made (in ideal conditions, perfectly elastic with no friction) by an object of mass m initially at rest between a fixed wall and another object of mass b 2N m, when struck by the other object. [1] (This gives the digits of π in base b up to N digits past the radix point.)