Search results
Results from the WOW.Com Content Network
The basic form of the problem of scheduling jobs with multiple (M) operations, over M machines, such that all of the first operations must be done on the first machine, all of the second operations on the second, etc., and a single job cannot be performed in parallel, is known as the flow-shop scheduling problem.
The activity selection problem is also known as the Interval scheduling maximization problem (ISMP), which is a special type of the more general Interval Scheduling problem. A classic application of this problem is in scheduling a room for multiple competing events, each having its own time requirements (start and end time), and many more arise ...
In the literature, problems of optimal job scheduling are often called machine scheduling, processor scheduling, multiprocessor scheduling, or just scheduling. There are many different problems of optimal job scheduling, different in the nature of jobs, the nature of machines, the restrictions on the schedule, and the objective function.
Flow Shop Ordonnancement. Flow-shop scheduling is an optimization problem in computer science and operations research.It is a variant of optimal job scheduling.In a general job-scheduling problem, we are given n jobs J 1, J 2, ..., J n of varying processing times, which need to be scheduled on m machines with varying processing power, while trying to minimize the makespan – the total length ...
Job times must be independent of the job sequence. All jobs must be processed in the first work center before going through the second work center. All jobs are equally prioritised. Johnson's rule is as follows: List the jobs and their times at each work center. Select the job with the shortest activity time. If that activity time is for the ...
Order the jobs by descending order of their processing-time, such that the job with the longest processing time is first. Schedule each job in this sequence into a machine in which the current load (= total processing-time of scheduled jobs) is smallest. Step 2 of the algorithm is essentially the list-scheduling (LS) algorithm. The difference ...
Single-machine scheduling or single-resource scheduling is an optimization problem in computer science and operations research.We are given n jobs J 1, J 2, ..., J n of varying processing times, which need to be scheduled on a single machine, in a way that optimizes a certain objective, such as the throughput.
Sequence-dependent setup time is a situation where the setup time required for a job depends on the job that came before it, rather than being constant for all jobs (independent job setup time). Serafini [ 10 ] assumes unbounded splittings and preemptions and gives polynomial-time algorithms that minimize the maximum tardiness and the maximum ...