enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heptagon - Wikipedia

    en.wikipedia.org/wiki/Heptagon

    In geometry, a heptagon or septagon is a seven-sided polygon or 7-gon.. The heptagon is sometimes referred to as the septagon, using "sept-" (an elision of septua-, a Latin-derived numerical prefix, rather than hepta-, a Greek-derived numerical prefix; both are cognate) together with the Greek suffix "-agon" meaning angle.

  3. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry. ... 9: 7{4} +2{7} Octagonal prism: 4.4.8:

  4. Heptahedron - Wikipedia

    en.wikipedia.org/wiki/Heptahedron

    There are 34 topologically distinct convex heptahedra, excluding mirror images. [2] ( Two polyhedra are "topologically distinct" if they have intrinsically different arrangements of faces and vertices, such that it is impossible to distort one into the other simply by changing the lengths of edges or the angles between edges or faces.)

  5. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    [7] Definitions based on the idea of a bounding surface rather than a solid are also common. [8] For instance, O'Rourke (1993) defines a polyhedron as a union of convex polygons (its faces), arranged in space so that the intersection of any two polygons is a shared vertex or edge or the empty set and so that their union is a manifold. [9]

  6. Cuboctahedron - Wikipedia

    en.wikipedia.org/wiki/Cuboctahedron

    The dihedral angle of a triangular cupola between square-to-triangle is approximately 125°, that between square-to-hexagon is 54.7°, and that between triangle-to-hexagon is 70.5°. Therefore, the dihedral angle of a cuboctahedron between square-to-triangle, on the edge where the base of two triangular cupolas are attached is 54.7° + 70.5 ...

  7. Goldberg polyhedron - Wikipedia

    en.wikipedia.org/wiki/Goldberg_polyhedron

    The number of vertices, edges, and faces of GP(m,n) can be computed from m and n, with T = m 2 + mn + n 2 = (m + n) 2 − mn, depending on one of three symmetry systems: [1] The number of non-hexagonal faces can be determined using the Euler characteristic, as demonstrated here.

  8. Reuleaux triangle - Wikipedia

    en.wikipedia.org/wiki/Reuleaux_triangle

    Alternatively, a Reuleaux triangle may be constructed from an equilateral triangle T by drawing three arcs of circles, each centered at one vertex of T and connecting the other two vertices. [9] Or, equivalently, it may be constructed as the intersection of three disks centered at the vertices of T, with radius equal to the side length of T. [10]

  9. Octagon - Wikipedia

    en.wikipedia.org/wiki/Octagon

    A regular skew octagon seen as edges of a square antiprism, symmetry D 4d, [2 +,8], (2*4), order 16. A skew octagon is a skew polygon with eight vertices and edges but not existing on the same plane. The interior of such an octagon is not generally defined. A skew zig-zag octagon has vertices alternating between two parallel planes.