enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Order statistic - Wikipedia

    en.wikipedia.org/wiki/Order_statistic

    For a random sample as above, with cumulative distribution (), the order statistics for that sample have cumulative distributions as follows [2] (where r specifies which order statistic): () = = [()] [()] The proof of this formula is pure combinatorics: for the th order statistic to be , the number of samples that are > has to be between and .

  3. Orders of magnitude (probability) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude...

    Probability of a human birth giving triplets or higher-order multiples [18] Probability of being dealt a full house in poker 1.9×10 −3: Probability of being dealt a flush in poker 2.7×10 −3: Probability of a random day of the year being your birthday (for all birthdays besides Feb. 29) 4×10 −3: Probability of being dealt a straight in ...

  4. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The degenerate distribution at x 0, where X is certain to take the value x 0. This does not look random, but it satisfies the definition of random variable. This is useful because it puts deterministic variables and random variables in the same formalism. The discrete uniform distribution, where all elements of a finite set are equally likely ...

  5. Stochastic ordering - Wikipedia

    en.wikipedia.org/wiki/Stochastic_ordering

    Similar to convex order, Laplace transform order is established by comparing the expectation of a function of the random variable where the function is from a special class: () = ⁡ (). This makes the Laplace transform order an integral stochastic order with the generator set given by the function set defined above with α {\displaystyle ...

  6. Random variable - Wikipedia

    en.wikipedia.org/wiki/Random_variable

    This graph shows how random variable is a function from all possible outcomes to real values. It also shows how random variable is used for defining probability mass functions. Informally, randomness typically represents some fundamental element of chance, such as in the roll of a die; it may also represent uncertainty, such as measurement ...

  7. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    About 68% of values drawn from a normal distribution are within one standard deviation σ from the mean; about 95% of the values lie within two standard deviations; and about 99.7% are within three standard deviations. [8] This fact is known as the 68–95–99.7 (empirical) rule, or the 3-sigma rule.

  8. Categorical distribution - Wikipedia

    en.wikipedia.org/wiki/Categorical_distribution

    Impose some sort of order on the categories (e.g. by an index that runs from 1 to k, where k is the number of categories). Convert the values to a cumulative distribution function (CDF) by replacing each value with the sum of all of the previous values. This can be done in time O(k). The resulting value for the first category will be 0.

  9. Frequency (statistics) - Wikipedia

    en.wikipedia.org/wiki/Frequency_(statistics)

    The cumulative frequency is the total of the absolute frequencies of all events at or below a certain point in an ordered list of events. [ 1 ] : 17–19 The relative frequency (or empirical probability ) of an event is the absolute frequency normalized by the total number of events: