Search results
Results from the WOW.Com Content Network
For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d. Derivations also use the log definitions x = b log b (x ...
Let X be a convex subset of a real vector space, and let f : X → R be a function taking non-negative values. Then f is: . Logarithmically convex if is convex, and; Strictly logarithmically convex if is strictly convex.
The elementary functions are constructed by composing arithmetic operations, the exponential function (), the natural logarithm (), trigonometric functions (,), and their inverses. The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's ...
Because log(x) is the sum of the terms of the form log(1 + 2 −k) corresponding to those k for which the factor 1 + 2 −k was included in the product P, log(x) may be computed by simple addition, using a table of log(1 + 2 −k) for all k. Any base may be used for the logarithm table. [53]
Note first that any 2 × 2 real matrix can be considered one of the three types of the complex number z = x + y ε, where ε 2 ∈ { −1, 0, +1 }. This z is a point on a complex subplane of the ring of matrices. [8] The case where the determinant is negative only arises in a plane with ε 2 =+1, that is a split-complex number plane. Only one ...
The area of the blue region converges to Euler's constant. Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (γ), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:
Demonstrating log* 4 = 2 for the base-e iterated logarithm. The value of the iterated logarithm can be found by "zig-zagging" on the curve y = log b (x) from the input n, to the interval [0,1]. In this case, b = e. The zig-zagging entails starting from the point (n, 0) and iteratively moving to (n, log b (n) ), to (0, log b (n) ), to (log b (n ...
In a certain sense, the log-gamma function is the more natural form; it makes some intrinsic attributes of the function clearer. A striking example is the Taylor series of logΓ around 1: l o g Γ ( z + 1 ) = − γ z + ∑ k = 2 ∞ ζ ( k ) k ( − z ) k ∀ | z | < 1 {\displaystyle \operatorname {log\Gamma } (z+1)=-\gamma z+\sum _{k=2 ...