Search results
Results from the WOW.Com Content Network
The most reactive kind of metallic element is an alkali metal of group 1 (e.g., sodium or potassium); this is because such an atom has only a single valence electron. During the formation of an ionic bond , which provides the necessary ionization energy , this one valence electron is easily lost to form a positive ion (cation) with a closed ...
The valence electrons (here 3s 2 3p 3) are written explicitly for all atoms. Electron configurations of elements beyond hassium (element 108) have never been measured; predictions are used below. As an approximate rule, electron configurations are given by the Aufbau principle and the Madelung rule.
In a sodium-vapor lamp for example, sodium atoms are excited to the 3p level by an electrical discharge, and return to the ground state by emitting yellow light of wavelength 589 nm. Usually, the excitation of valence electrons (such as 3s for sodium) involves energies corresponding to photons of visible or ultraviolet light.
Count valence electrons. Nitrogen has 5 valence electrons; each oxygen has 6, for a total of (6 × 2) + 5 = 17. The ion has a charge of −1, which indicates an extra electron, so the total number of electrons is 18. Connect the atoms by single bonds. Each oxygen must be bonded to the nitrogen, which uses four electrons—two in each bond.
Sodium is a chemical element; it has symbol Na (from Neo-Latin natrium) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable isotope is 23 Na. The free metal does not occur in nature and must be prepared from compounds.
For example, sodium has one valence electron in its outermost shell, so in ionized form it is commonly found with one lost electron, as Na +. On the other side of the periodic table, chlorine has seven valence electrons, so in ionized form it is commonly found with one gained electron, as Cl −.
Charge number or valence [1] of an ion is the coefficient that, when multiplied by the elementary charge, gives the ion's charge. [2] For example, the charge on a chloride ion, , is , where e is the elementary charge.
This is a list of chemical elements and their atomic properties, ordered by atomic number (Z).. Since valence electrons are not clearly defined for the d-block and f-block elements, there not being a clear point at which further ionisation becomes unprofitable, a purely formal definition as number of electrons in the outermost shell has been used.