Search results
Results from the WOW.Com Content Network
In physics, angular velocity (symbol ω or , the lowercase Greek letter omega), also known as the angular frequency vector, [1] is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates (spins or revolves) around an axis of rotation and how fast the axis itself changes direction.
Also in some frames not tied to the body can it be possible to obtain such simple (diagonal tensor) equations for the rate of change of the angular momentum. Then ω must be the angular velocity for rotation of that frames axes instead of the rotation of the body. It is however still required that the chosen axes are still principal axes of ...
A sphere rotating around an axis. Points farther from the axis move faster, satisfying ω = v / r.. In physics, angular frequency (symbol ω), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine function (for example, in oscillations and waves).
A twist is a screw used to represent the velocity of a rigid body as an angular velocity around an axis and a linear velocity along this axis. All points in the body have the same component of the velocity along the axis, however the greater the distance from the axis the greater the velocity in the plane perpendicular to this axis.
Physical examples of pseudovectors include torque, [4] angular velocity, angular momentum, [4] magnetic field, [4] vorticity and magnetic dipole moment. Each wheel of the car on the left driving away from an observer has an angular momentum pseudovector pointing left. The same is true for the mirror image of the car.
Angular momenta of a classical object. Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point, right: extrinsic orbital angular momentum L about an axis, top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω) [6] bottom: momentum p and its radial position r ...
This formula shows how to calculate the ... the local vectorial angular velocity of the mass ... curl of the 2-dimensional vector field, as in the examples on ...
Because of all this, when the angular velocity vector (or the angular momentum vector) is not close to the axis of highest or lowest inertia, the body "tumbles". Most moons rotate more or less around their axis of greatest inertia (due to viscous effects), but Hyperion (a moon of Saturn), two moons of Pluto and many other small bodies of the ...