Search results
Results from the WOW.Com Content Network
The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
That is (unlike road distance with one-way streets) the distance between two points does not depend on which of the two points is the start and which is the destination. [12] It is positive, meaning that the distance between every two distinct points is a positive number, while the distance from any point to itself is zero. [12]
The denominator of this expression is the distance between P 1 and P 2. The numerator is twice the area of the triangle with its vertices at the three points, (x 0,y 0), P 1 and P 2. See: Area of a triangle § Using coordinates.
The shortest distance between two points in plane is a Cartesian straight line. The Pythagorean theorem is used to calculate the distance between points in a plane. Even over short distances, the accuracy of geographic distance calculations which assume a flat Earth depend on the method by which the latitude and longitude coordinates have been ...
The function hamming_distance(), implemented in Python 3, computes the Hamming distance between two strings (or other iterable objects) of equal length by creating a sequence of Boolean values indicating mismatches and matches between corresponding positions in the two inputs, then summing the sequence with True and False values, interpreted as ...
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
Most of the notions of distance between two points or objects described above are examples of the mathematical idea of a metric. A metric or distance function is a function d which takes pairs of points or objects to real numbers and satisfies the following rules: The distance between an object and itself is always zero.