Search results
Results from the WOW.Com Content Network
Reasons for measuring throughput in networks. People are often concerned about measuring the maximum data throughput in bits per second of a communications link or network access. A typical method of performing a measurement is to transfer a 'large' file from one system to another system and measure the time required to complete the transfer or ...
Throughput is usually measured in bits per second (bit/s, sometimes abbreviated bps), and sometimes in packets per second (p/s or pps) or data packets per time slot. The system throughput or aggregate throughput is the sum of the data rates that are delivered over all channels in a network. [1]
The network throughput of a connection with flow control, for example a TCP connection, with a certain window size (buffer size), can be expressed as: Network throughput ≈ Window size / roundtrip time. In case of only one physical link between the sending and transmitting nodes, this corresponds to:
In data communications, the bandwidth-delay product is the product of a data link's capacity (in bits per second) and its round-trip delay time (in seconds). [1] The result, an amount of data measured in bits (or bytes), is equivalent to the maximum amount of data on the network circuit at any given time, i.e., data that has been transmitted but not yet acknowledged.
Throughput is controlled by available bandwidth, as well as the available signal-to-noise ratio and hardware limitations. Throughput for the purpose of this article will be understood to be measured from the arrival of the first bit of data at the receiver, to decouple the concept of throughput from the concept of latency.
The goodput is a ratio between delivered amount of information, and the total delivery time. This delivery time includes: Inter-packet time gaps caused by packet generation processing time (a source that does not use the full network capacity), or by protocol timing (for example collision avoidance)
The U.S. hospice industry has quadrupled in size since 2000. Nearly half of all Medicare patients who die now do so as a hospice patient — twice as many as in 2000, government data shows.
Using Little's Law, one can calculate throughput with the equation: = where: I is the number of units contained within the system, inventory; T is the time it takes for all the inventory to go through the process, flow time; R is the rate at which the process is delivering throughput, flow rate or throughput.