Search results
Results from the WOW.Com Content Network
Thus, the degree of dissociation of a weak electrolyte is proportional to the inverse square root of the concentration, or the square root of the dilution. The concentration of any one ionic species is given by the root of the product of the dissociation constant and the concentration of the electrolyte.
The dissociation degree is the fraction of original solute molecules that have dissociated. It is usually indicated by the Greek symbol α. It is usually indicated by the Greek symbol α. More accurately, degree of dissociation refers to the amount of solute dissociated into ions or radicals per mole.
The degree of dissociation is the fraction of the original solute molecules that have dissociated. It is usually indicated by the Greek symbol α {\displaystyle \alpha } . There is a simple relationship between this parameter and the van 't Hoff factor.
The Debye–Hückel theory was proposed by Peter Debye and Erich Hückel as a theoretical explanation for departures from ideality in solutions of electrolytes and plasmas. [1] It is a linearized Poisson–Boltzmann model, which assumes an extremely simplified model of electrolyte solution but nevertheless gave accurate predictions of mean activity coefficients for ions in dilute solution.
In chemistry, dimerization is the process of joining two identical or similar molecular entities by bonds.The resulting bonds can be either strong or weak. Many symmetrical chemical species are described as dimers, even when the monomer is unknown or highly unstable.
For K′ 3 there are three different dissociation constants — there are only three possibilities for which pocket is filled last (I, II or III) — and one state (I–II–III). Even when the microscopic dissociation constant is the same for each individual binding event, the macroscopic outcome (K′ 1, K′ 2 and K′ 3) is not equal. This ...
In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. [1] In an ideal mixture, the microscopic interactions between each pair of chemical species are the same (or macroscopically equivalent, the enthalpy change of solution and volume variation in mixing is zero) and, as a result, properties of the mixtures ...
The degree of dissociation α (also known as degree of ionization), is a way of representing the strength of an acid. It is defined as the ratio of the number of ionized molecules and the number of molecules dissolved in water.