enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Space hierarchy theorem - Wikipedia

    en.wikipedia.org/wiki/Space_hierarchy_theorem

    The hierarchy theorems are used to demonstrate that the time and space complexity classes form a hierarchy where classes with tighter bounds contain fewer languages than those with more relaxed bounds. Here we define and prove the space hierarchy theorem. The space hierarchy theorems rely on the concept of space-constructible functions.

  3. Time complexity - Wikipedia

    en.wikipedia.org/wiki/Time_complexity

    [1]: 226 Since this function is generally difficult to compute exactly, and the running time for small inputs is usually not consequential, one commonly focuses on the behavior of the complexity when the input size increases—that is, the asymptotic behavior of the complexity. Therefore, the time complexity is commonly expressed using big O ...

  4. Best, worst and average case - Wikipedia

    en.wikipedia.org/wiki/Best,_worst_and_average_case

    Also, when implemented with the "shortest first" policy, the worst-case space complexity is instead bounded by O(log(n)). Heapsort has O(n) time when all elements are the same. Heapify takes O(n) time and then removing elements from the heap is O(1) time for each of the n elements. The run time grows to O(nlog(n)) if all elements must be distinct.

  5. Computational complexity theory - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Since the time taken on different inputs of the same size can be different, the worst-case time complexity () is defined to be the maximum time taken over all inputs of size . If T ( n ) {\displaystyle T(n)} is a polynomial in n {\displaystyle n} , then the algorithm is said to be a polynomial time algorithm.

  6. Space complexity - Wikipedia

    en.wikipedia.org/wiki/Space_complexity

    This includes the memory space used by its inputs, called input space, and any other (auxiliary) memory it uses during execution, which is called auxiliary space. Similar to time complexity, space complexity is often expressed asymptotically in big O notation, such as (), (⁡), (), (), etc., where n is a characteristic of the input influencing ...

  7. Time hierarchy theorem - Wikipedia

    en.wikipedia.org/wiki/Time_hierarchy_theorem

    However, the time hierarchy theorems provide no means to relate deterministic and non-deterministic complexity, or time and space complexity, so they cast no light on the great unsolved questions of computational complexity theory: whether P and NP, NP and PSPACE, PSPACE and EXPTIME, or EXPTIME and NEXPTIME are equal or not.

  8. Computational complexity - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity

    Therefore, the time complexity, generally called bit complexity in this context, may be much larger than the arithmetic complexity. For example, the arithmetic complexity of the computation of the determinant of a n × n integer matrix is O ( n 3 ) {\displaystyle O(n^{3})} for the usual algorithms ( Gaussian elimination ).

  9. Complexity class - Wikipedia

    en.wikipedia.org/wiki/Complexity_class

    Turing machines enable intuitive notions of "time" and "space". The time complexity of a TM on a particular input is the number of elementary steps that the Turing machine takes to reach either an accept or reject state. The space complexity is the number of cells on its tape that it uses to reach either an accept or reject state.