Search results
Results from the WOW.Com Content Network
In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [ 1 ] [ 2 ] It is also known as the shift-and-add -3 algorithm , and can be implemented using a small number of gates in computer hardware, but at the expense of high latency .
A logic gate is a device that performs a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, one that has, for instance, zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device [1] (see ...
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.
Similarly, ASCII systems use a zone value of 0011 (hex 3), giving character codes 30 to 39 (hex). For signed zoned decimal values, the rightmost (least significant) zone nibble holds the sign digit, which is the same set of values that are used for signed packed decimal numbers (see above).
XOR gate (sometimes EOR, or EXOR and pronounced as Exclusive OR) is a digital logic gate that gives a true (1 or HIGH) output when the number of true inputs is odd. An XOR gate implements an exclusive or ( ↮ {\displaystyle \nleftrightarrow } ) from mathematical logic ; that is, a true output results if one, and only one, of the inputs to the ...
The book also covers more recent developments, including topics like floating point math, operating systems, and ASCII. The book focuses on "pre-networked computers" and does not cover concepts like distributed computing because Petzold thought that it would not be as useful for "most people using the Internet", his intended audience. [ 4 ]
This is because the radix of the hexadecimal system (16) is a power of the radix of the binary system (2). More specifically, 16 = 2 4, so it takes four digits of binary to represent one digit of hexadecimal, as shown in the adjacent table. To convert a hexadecimal number into its binary equivalent, simply substitute the corresponding binary ...
The zone bits contain either 'F'x, forming the characters 0–9, or the character position containing the overpunch contains a hexadecimal value indicating a positive or negative value, forming a different set of characters. (A, C, E, and F zones indicate positive values, B and D negative).