Search results
Results from the WOW.Com Content Network
It is almost certain that Euler meant that the sum of the reciprocals of the primes less than n is asymptotic to log log n as n approaches infinity. It turns out this is indeed the case, and a more precise version of this fact was rigorously proved by Franz Mertens in 1874. [3] Thus Euler obtained a correct result by questionable means.
The notation γ appears nowhere in the writings of either Euler or Mascheroni, and was chosen at a later time, perhaps because of the constant's connection to the gamma function. [3] For example, the German mathematician Carl Anton Bretschneider used the notation γ in 1835, [ 4 ] and Augustus De Morgan used it in a textbook published in parts ...
The area of the blue region converges on the Euler–Mascheroni constant, which is the 0th Stieltjes constant. In mathematics , the Stieltjes constants are the numbers γ k {\displaystyle \gamma _{k}} that occur in the Laurent series expansion of the Riemann zeta function :
The first terms of the series sum to approximately +, where is the natural logarithm and is the Euler–Mascheroni constant. Because the logarithm has arbitrarily large values, the harmonic series does not have a finite limit: it is a divergent series .
The interpolating function is in fact closely related to the digamma function = (+) +, where ψ(x) is the digamma function, and γ is the Euler–Mascheroni constant. The integration process may be repeated to obtain H x , 2 = ∑ k = 1 ∞ ( − 1 ) k − 1 k ( x k ) H k . {\displaystyle H_{x,2}=\sum _{k=1}^{\infty }{\frac {(-1)^{k-1}}{k}}{x ...
As an asymptotic expansion, this series is not convergent: it is a reasonable approximation only if the series is truncated at a finite number of terms, and only large values of x are employed. This expansion follows directly from the asymptotic expansion for the exponential integral. This implies e.g. that we can bracket li as:
The Euler–Mascheroni constant γ: In 2010 it has been shown that an infinite list of Euler-Lehmer constants (which includes γ/4) contains at most one algebraic number. [51] [52] In 2012 it was shown that at least one of γ and the Gompertz constant δ is transcendental. [53]
Euler's product formula for the gamma function, combined with the functional equation and an identity for the Euler–Mascheroni constant, yields the following expression for the digamma function, valid in the complex plane outside the negative integers (Abramowitz and Stegun 6.3.16): [1]