Search results
Results from the WOW.Com Content Network
The alpha helix is the most common structural arrangement in the secondary structure of proteins. It is also the most extreme type of local structure, and it is the local structure that is most easily predicted from a sequence of amino acids. The alpha helix has a right-handed helix conformation in which every backbone N−H group hydrogen ...
Domain A, the larger of the two domains, contains residues 1-17 and 90–194 in TSST-1 and consists of a long alpha (α) helix with residues 125-140 surrounded by a 5-strand beta (β) sheet. [ 1 ] [ 5 ] Domain B is unique because it contains residues 18–89 in TSST-1 and consists of a (β) barrel made up of 5 β-strands. [ 1 ]
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
These methods were based on the helix- or sheet-forming propensities of individual amino acids, sometimes coupled with rules for estimating the free energy of forming secondary structure elements. The first widely used techniques to predict protein secondary structure from the amino acid sequence were the Chou–Fasman method [ 17 ] [ 18 ] [ 19 ...
The first two (26-84 and 58-110) are essential for conformational folding; each joins an alpha helix of the first layer to a beta sheet of the second layer, forming a small hydrophobic core in its vicinity. The latter two disulfide bonds (40-95 and 65-72) are less essential for folding; either one can be reduced (but not both) without affecting ...
A typical example is gramicidin A, a peptide that forms a dimeric transmembrane β-helix. [7] This peptide is secreted by gram-positive bacteria as an antibiotic. A transmembrane polyproline-II helix has not been reported in natural proteins. Nonetheless, this structure was experimentally observed in specifically designed artificial peptides. [8]
A transmembrane domain (TMD) is a membrane-spanning protein domain.TMDs may consist of one or several alpha-helices or a transmembrane beta barrel.Because the interior of the lipid bilayer is hydrophobic, the amino acid residues in TMDs are often hydrophobic, although proteins such as membrane pumps and ion channels can contain polar residues.
Hydrophobicity scales can also be obtained by calculating the solvent accessible surface areas for amino acid residues in the expended polypeptide chain [22] or in alpha-helix and multiplying the surface areas by the empirical solvation parameters for the corresponding types of atoms. [3]