Search results
Results from the WOW.Com Content Network
Yield Point Elongation (YPE) significantly impacts the usability of steel. In the context of tensile testing and the engineering stress-strain curve, the Yield Point is the initial stress level, below the maximum stress, at which an increase in strain occurs without an increase in stress.
The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening ), showing a smooth elastic-plastic transition.
Stress–strain curve for brittle materials compared to ductile materials. Some common characteristics among the stress–strain curves can be distinguished with various groups of materials and, on this basis, to divide materials into two broad categories; namely, the ductile materials and the brittle materials. [1]: 51
The modulus of elasticity can be used to determine the stress–strain relationship in the linear-elastic portion of the stress–strain curve. The linear-elastic region is either below the yield point, or if a yield point is not easily identified on the stress–strain plot it is defined to be between 0 and 0.2% strain, and is defined as the ...
The strain can be decomposed into a recoverable elastic strain and an inelastic strain (). The stress at initial yield is σ 0 {\displaystyle \sigma _{0}} . For strain hardening materials (as shown in the figure) the yield stress increases with increasing plastic deformation to a value of σ y {\displaystyle \sigma _{y}} .
where Ur is the modulus of resilience, σy is the yield strength, εy is the yield strain, and E is the Young's modulus. [1] This analysis is not valid for non-linear elastic materials like rubber, for which the approach of area under the curve until elastic limit must be used.
A hyperelastic or Green elastic material [1] is a type of constitutive model for ideally elastic material for which the stress–strain relationship derives from a strain energy density function. The hyperelastic material is a special case of a Cauchy elastic material .
In solid mechanics, the tangent modulus is the slope of the stress–strain curve at any specified stress or strain. Below the proportional limit (the limit of the linear elastic regime) the tangent modulus is equivalent to Young's modulus. Above the proportional limit the tangent modulus varies with strain and is most accurately found from ...