enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. CuPy - Wikipedia

    en.wikipedia.org/wiki/CuPy

    CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.

  3. Anaconda (Python distribution) - Wikipedia

    en.wikipedia.org/wiki/Anaconda_(Python_distribution)

    Anaconda is an open source [9] [10] data science and artificial intelligence distribution platform for Python and R programming languages. Developed by Anaconda, Inc., [11] an American company [1] founded in 2012, [11] the platform is used to develop and manage data science and AI projects. [9] In 2024, Anaconda Inc. has about 300 employees [12 ...

  4. Anaconda (installer) - Wikipedia

    en.wikipedia.org/wiki/Anaconda_(installer)

    Anaconda is a free and open-source system installer for Linux distributions.. Anaconda is used by Red Hat Enterprise Linux, Oracle Linux, Scientific Linux, Rocky Linux, AlmaLinux, CentOS, MIRACLE LINUX, Qubes OS, Fedora, Sabayon Linux and BLAG Linux and GNU, also in some less known and discontinued distros like Progeny Componentized Linux, Asianux, Foresight Linux, Rpath Linux and VidaLinux.

  5. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    In September 2022, Meta announced that PyTorch would be governed by the independent PyTorch Foundation, a newly created subsidiary of the Linux Foundation. [ 23 ] PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo , a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and ...

  6. PhyCV - Wikipedia

    en.wikipedia.org/wiki/PhyCV

    We use the Jetson Nano (4GB) with NVIDIA JetPack SDK version 4.6.1, which comes with pre- installed Python 3.6, CUDA 10.2, and OpenCV 4.1.1. We further install PyTorch 1.10 to enable the GPU accelerated PhyCV. We demonstrate the results and metrics of running PhyCV on Jetson Nano in real-time for edge detection and low-light enhancement tasks.

  7. Torch (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Torch_(machine_learning)

    The torch package also simplifies object-oriented programming and serialization by providing various convenience functions which are used throughout its packages. The torch.class(classname, parentclass) function can be used to create object factories ().

  8. CUDA - Wikipedia

    en.wikipedia.org/wiki/CUDA

    CUDA is a software layer that gives direct access to the GPU's virtual instruction set and parallel computational elements for the execution of compute kernels. [6] In addition to drivers and runtime kernels, the CUDA platform includes compilers, libraries and developer tools to help programmers accelerate their applications.

  9. Dask (software) - Wikipedia

    en.wikipedia.org/wiki/Dask_(software)

    Dask is an open-source Python library for parallel computing.Dask [1] scales Python code from multi-core local machines to large distributed clusters in the cloud. Dask provides a familiar user interface by mirroring the APIs of other libraries in the PyData ecosystem including: Pandas, scikit-learn and NumPy.