Search results
Results from the WOW.Com Content Network
A sol is a colloidal suspension made out of tiny solid particles [1] in a continuous liquid medium. Sols are stable, so that they do not settle down when left undisturbed, and exhibit the Tyndall effect, which is the scattering of light by the particles in the colloid. The size of the particles can vary from 1 nm - 100 nm.
An ideal solution or ideal mixture is a solution that exhibits thermodynamic properties analogous to those of a mixture of ideal gases. [1] The enthalpy of mixing is zero [2] as is the volume change on mixing by definition; the closer to zero the enthalpy of mixing is, the more "ideal" the behavior of the solution becomes.
In contrast to ideal solutions, regular solutions do possess a non-zero enthalpy of mixing, due to the W term. If the unlike interactions are more unfavorable than the like ones, we get competition between an entropy of mixing term that produces a minimum in the Gibbs free energy at x 1 = 0.5 and the enthalpy term that has a maximum there.
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation.
The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.
b is the molality of the solution. Through cryoscopy, a known constant can be used to calculate an unknown molar mass. The term "cryoscopy" means "freezing measurement" in Greek. Freezing point depression is a colligative property, so ΔT depends only on the number of solute particles dissolved, not the nature of those particles.
The history of thermodynamics is fundamentally interwoven with the history of physics and the history of chemistry, and ultimately dates back to theories of heat in antiquity. The laws of thermodynamics are the result of progress made in this field over the nineteenth and early twentieth centuries.
Self-similar solutions appear whenever the problem lacks a characteristic length or time scale (for example, the Blasius boundary layer of an infinite plate, but not of a finite-length plate). These include, for example, the Blasius boundary layer or the Sedov–Taylor shell .