Ads
related to: derivative problem solver
Search results
Results from the WOW.Com Content Network
Ernst Hairer, Syvert Paul Nørsett and Gerhard Wanner, Solving ordinary differential equations I: Nonstiff problems, second edition, Springer Verlag, Berlin, 1993. ISBN 3-540-56670-8. Ernst Hairer and Gerhard Wanner, Solving ordinary differential equations II: Stiff and differential-algebraic problems, second edition, Springer Verlag, Berlin, 1996.
Rosenbrock methods for stiff differential equations are a family of single-step methods for solving ordinary differential equations. [ 1 ] [ 2 ] They are related to the implicit Runge–Kutta methods [ 3 ] and are also known as Kaps–Rentrop methods.
The backward differentiation formula (BDF) is a family of implicit methods for the numerical integration of ordinary differential equations.They are linear multistep methods that, for a given function and time, approximate the derivative of that function using information from already computed time points, thereby increasing the accuracy of the approximation.
To use a finite difference method to approximate the solution to a problem, one must first discretize the problem's domain. This is usually done by dividing the domain into a uniform grid (see image). This means that finite-difference methods produce sets of discrete numerical approximations to the derivative, often in a "time-stepping" manner.
The problem P1 can be solved directly by computing antiderivatives. However, this method of solving the boundary value problem (BVP) works only when there is one spatial dimension. It does not generalize to higher-dimensional problems or problems like + ″ =. For this reason, we will develop the finite element method for P1 and outline its ...
where the expression on the left denotes the second partial derivatives of f in x and y, respectively. This is the Poisson equation, and can be physically interpreted as some sort of heat conduction problem, or a problem in potential theory, among other possibilities. If we write f and g in Fourier series:
Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus , Newton's method (also called Newton–Raphson ) is an iterative method for finding the roots of a differentiable function f {\displaystyle f} , which are solutions to the equation f ( x ) = 0 {\displaystyle f(x)=0} .
Root-finding algorithms are used to solve nonlinear equations (they are so named since a root of a function is an argument for which the function yields zero). If the function is differentiable and the derivative is known, then Newton's method is a popular choice. [16] [17] Linearization is another technique for solving nonlinear equations.
Ads
related to: derivative problem solver