Search results
Results from the WOW.Com Content Network
An intramolecular force (from Latin intra-'within') is any force that binds together the atoms making up a molecule. [1] Intramolecular forces are stronger than the intermolecular forces that govern the interactions between molecules.
Intermolecular forces observed between atoms and molecules can be described phenomenologically as occurring between permanent and instantaneous dipoles, as outlined above. Alternatively, one may seek a fundamental, unifying theory that is able to explain the various types of interactions such as hydrogen bonding , [ 22 ] van der Waals force ...
A force field is the collection of parameters to describe the physical interactions between atoms or physical units (up to ~10 8) using a given energy expression. The term force field characterizes the collection of parameters for a given interatomic potential (energy function) and is often used within the computational chemistry community. [50]
A force field is used to minimize the bond stretching energy of this ethane molecule.. Molecular mechanics uses classical mechanics to model molecular systems. The Born–Oppenheimer approximation is assumed valid and the potential energy of all systems is calculated as a function of the nuclear coordinates using force fields.
Part of force field of ethane for the C-C stretching bond. In the context of chemistry, molecular physics, physical chemistry, and molecular modelling, a force field is a computational model that is used to describe the forces between atoms (or collections of atoms) within molecules or between molecules as well as in crystals.
The strength of intermolecular hydrogen bonds is most often evaluated by measurements of equilibria between molecules containing donor and/or acceptor units, most often in solution. [21] The strength of intramolecular hydrogen bonds can be studied with equilibria between conformers with and without hydrogen bonds.
Otherwise-intermolecular reactions can be made temporarily intramolecular by linking both reactants by a tether with all the advantages associated to it. Popular choices of tether contain a carbonate ester , boronic ester , silyl ether , or a silyl acetal link ( silicon tethers ) [ 9 ] [ 10 ] which are fairly inert in many organic reactions yet ...
It is usually manifested in intermolecular reactions, whereas discussion of steric effects often focus on intramolecular interactions. Steric hindrance is often exploited to control selectivity, such as slowing unwanted side-reactions. Steric hindrance between adjacent groups can also affect torsional bond angles.