enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy release rate (fracture mechanics) - Wikipedia

    en.wikipedia.org/wiki/Energy_release_rate...

    Plot of Load vs. Displacement. The energy release rate is defined [3] as the instantaneous loss of total potential energy per unit crack growth area , , where the total potential energy is written in terms of the total strain energy , surface traction , displacement , and body force by

  3. J-integral - Wikipedia

    en.wikipedia.org/wiki/J-integral

    The J-integral represents a way to calculate the strain energy release rate, or work per unit fracture surface area, in a material. [1] The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov [2] and independently in 1968 by James R. Rice, [3] who showed that an energetic contour path integral (called J) was independent of the path around a crack.

  4. Material failure theory - Wikipedia

    en.wikipedia.org/wiki/Material_failure_theory

    The fracture toughness and the critical strain energy release rate for plane stress are related by = where is the Young's modulus. If an initial crack size is known, then a critical stress can be determined using the strain energy release rate criterion.

  5. Fracture mechanics - Wikipedia

    en.wikipedia.org/wiki/Fracture_mechanics

    the stored elastic strain energy which is released as a crack grows. This is the thermodynamic driving force for fracture. the dissipated energy which includes plastic dissipation and the surface energy (and any other dissipative forces that may be at work). The dissipated energy provides the thermodynamic resistance to fracture.

  6. Stress intensity factor - Wikipedia

    en.wikipedia.org/wiki/Stress_intensity_factor

    Relationship to energy release rate and J-integral [ edit ] In plane stress conditions, the strain energy release rate ( G {\displaystyle G} ) for a crack under pure mode I, or pure mode II loading is related to the stress intensity factor by:

  7. Cohesive zone model - Wikipedia

    en.wikipedia.org/wiki/Cohesive_zone_model

    This allows the strain energy release rate, , to be defined by the critical crack opening displacement, = or the critical cohesive zone size, , as follows: [6] G c = 2 ∫ 0 ν c σ y y d ν = 8 σ t h 2 r c o π E = 2 γ s {\displaystyle G_{c}=2\int _{0}^{\nu _{c}}\sigma _{yy}d\nu ={\frac {8\sigma _{th}^{2}r_{co}}{\pi E}}=2\gamma _{s}}

  8. Fracture toughness - Wikipedia

    en.wikipedia.org/wiki/Fracture_toughness

    Strain energy release rate per unit fracture surface area is calculated by J-integral method which is a contour path integral around the crack tip where the path begins and ends on either crack surfaces. J-toughness value signifies the resistance of the material in terms of amount of stress energy required for a crack to grow.

  9. Crack growth resistance curve - Wikipedia

    en.wikipedia.org/wiki/Crack_growth_resistance_curve

    The usage of R-curves in fracture analysis is a more complex, but more comprehensive failure criteria compared to the common failure criteria that fracture occurs when where is simply a constant value called the critical energy release rate. An R-curve based failure analysis takes into account the notion that a material's resistance to fracture ...