enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...

  3. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    , the hydraulic diameter of the pipe (for a pipe of circular section, this equals D; otherwise D H = 4A/P for a pipe of cross-sectional area A and perimeter P) (m); v {\displaystyle \langle v\rangle } , the mean flow velocity , experimentally measured as the volumetric flow rate Q per unit cross-sectional wetted area (m/s);

  4. Dynamic load testing - Wikipedia

    en.wikipedia.org/wiki/Dynamic_load_testing

    Dynamic load testing (or dynamic loading) is a method to assess a pile's bearing capacity by applying a dynamic load to the pile head (a falling mass) while recording acceleration and strain on the pile head. Dynamic load testing is a high strain dynamic test which can be applied after pile installation for concrete piles. For steel or timber ...

  5. Capstan equation - Wikipedia

    en.wikipedia.org/wiki/Capstan_equation

    The capstan equation [1] or belt friction equation, also known as Euler–Eytelwein formula [2] (after Leonhard Euler and Johann Albert Eytelwein), [3] relates the hold-force to the load-force if a flexible line is wound around a cylinder (a bollard, a winch or a capstan).

  6. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    where is the density of the fluid, is the average velocity in the pipe, is the friction factor from the Moody chart, is the length of the pipe and is the pipe diameter. The chart plots Darcy–Weisbach friction factor f D {\displaystyle f_{D}} against Reynolds number Re for a variety of relative roughnesses, the ratio of the mean height of ...

  7. Barlow's formula - Wikipedia

    en.wikipedia.org/wiki/Barlow's_formula

    Barlow's formula (called "Kesselformel" [1] in German) relates the internal pressure that a pipe [2] can withstand to its dimensions and the strength of its material. This approximate formula is named after Peter Barlow , an English mathematician .

  8. High strain dynamic testing - Wikipedia

    en.wikipedia.org/wiki/High_strain_dynamic_testing

    High strain dynamic testing is a method of testing deep foundations to obtain information about their capacity and integrity, and in some cases, to monitor their installation. It is codified by ASTM D4945-12 - Standard Test Method for High-Strain Dynamic Testing of Piles.

  9. Prony equation - Wikipedia

    en.wikipedia.org/wiki/Prony_equation

    It is an empirical equation developed by Frenchman Gaspard de Prony in the 19th century: h f = L D ( a V + b V 2 ) {\displaystyle h_{f}={\frac {L}{D}}(aV+bV^{2})} where h f is the head loss due to friction, calculated from: the ratio of the length to diameter of the pipe L/D , the velocity of the flow V , and two empirical factors a and b to ...