Search results
Results from the WOW.Com Content Network
Circle of forces. The circle of forces, traction circle, friction circle, [1] or friction ellipse [2] [3] [4] is a useful way to think about the dynamic interaction between a vehicle's tire and the road surface. The diagram below shows the tire from above, so that the road surface lies in the xy-plane.
In the first case the force is continuously applied to the car by a person, while in the second case the force is delivered in a short impulse. Contact forces are often decomposed into orthogonal components, one perpendicular to the surface(s) in contact called the normal force, and one parallel to the surface(s) in contact, called the friction ...
Traction can also refer to the maximum tractive force between a body and a surface, as limited by available friction; when this is the case, traction is often expressed as the ratio of the maximum tractive force to the normal force and is termed the coefficient of traction (similar to coefficient of friction).
A force arrow should lie along the line of force, but where along the line is irrelevant. A force on an extended rigid body is a sliding vector. non-rigid extended. The point of application of a force becomes crucial and has to be indicated on the diagram. A force on a non-rigid body is a bound vector. Some use the tail of the arrow to indicate ...
The tire model must produce realistic shear forces during braking, acceleration, cornering, and combinations, on a range of surface conditions. Many models are in use. Most are semi-empirical, such as the Pacejka Magic Formula model. Racing car games or simulators are also a form of vehicle dynamics simulation. In early versions many ...
Automotive aerodynamics is the study of the aerodynamics of road vehicles. Its main goals are reducing drag and wind noise, minimizing noise emission, and preventing undesired lift forces and other causes of aerodynamic instability at high speeds.
The effect of a fictitious force also occurs when a car takes the bend. Observed from a non-inertial frame of reference attached to the car, the fictitious force called the centrifugal force appears. As the car enters a left turn, a suitcase first on the left rear seat slides to the right rear seat and then continues until it comes into contact ...
The torque tube surrounded the true driveshaft and exerted the force to its ball joint at the extreme rear of the transmission, which was attached to the engine. A similar method like this was used in the late 1930s by Buick and by Hudson's bathtub car in 1948, which used helical springs that could not take fore-and-aft thrust.