Search results
Results from the WOW.Com Content Network
However, most root-finding algorithms do not guarantee that they will find all roots of a function, and if such an algorithm does not find any root, that does not necessarily mean that no root exists. Most numerical root-finding methods are iterative methods, producing a sequence of numbers that ideally converges towards a root as a limit.
Then for each interval (A(x), M(x)) in the list, the algorithm remove it from the list; if the number of sign variations of the coefficients of A is zero, there is no root in the interval, and one passes to the next interval. If the number of sign variations is one, the interval defined by () and () is an isolating interval.
The oldest method for computing the number of real roots, and the number of roots in an interval results from Sturm's theorem, but the methods based on Descartes' rule of signs and its extensions—Budan's and Vincent's theorems—are generally more efficient. For root finding, all proceed by reducing the size of the intervals in which roots ...
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
In this case a and b are said to bracket a root since, by the intermediate value theorem, the continuous function f must have at least one root in the interval (a, b). At each step the method divides the interval in two parts/halves by computing the midpoint c = (a+b) / 2 of the interval and the value of the function f(c) at that point.
If the multiplicity m of the root is finite then g(x) = f(x) / f ′ (x) will have a root at the same location with multiplicity 1. Applying Newton's method to find the root of g(x) recovers quadratic convergence in many cases although it generally involves the second derivative of f(x).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
b k is the current iterate, i.e., the current guess for the root of f. a k is the "contrapoint," i.e., a point such that f(a k) and f(b k) have opposite signs, so the interval [a k, b k] contains the solution. Furthermore, |f(b k)| should be less than or equal to |f(a k)|, so that b k is a better guess for the unknown solution than a k.