enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Real-root isolation - Wikipedia

    en.wikipedia.org/wiki/Real-root_isolation

    Such a procedure is called root isolation, and a resulting interval that contains exactly one root is an isolating interval for this root. Wilkinson's polynomial shows that a very small modification of one coefficient of a polynomial may change dramatically not only the value of the roots, but also their nature (real or complex). Also, even ...

  3. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    However, most root-finding algorithms do not guarantee that they will find all roots of a function, and if such an algorithm does not find any root, that does not necessarily mean that no root exists. Most numerical root-finding methods are iterative methods, producing a sequence of numbers that ideally converges towards a root as a limit.

  4. Brent's method - Wikipedia

    en.wikipedia.org/wiki/Brent's_method

    b k is the current iterate, i.e., the current guess for the root of f. a k is the "contrapoint," i.e., a point such that f(a k) and f(b k) have opposite signs, so the interval [a k, b k] contains the solution. Furthermore, |f(b k)| should be less than or equal to |f(a k)|, so that b k is a better guess for the unknown solution than a k.

  5. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    The oldest method for computing the number of real roots, and the number of roots in an interval results from Sturm's theorem, but the methods based on Descartes' rule of signs and its extensions—Budan's and Vincent's theorems—are generally more efficient. For root finding, all proceed by reducing the size of the intervals in which roots ...

  6. Bisection method - Wikipedia

    en.wikipedia.org/wiki/Bisection_method

    In this case a and b are said to bracket a root since, by the intermediate value theorem, the continuous function f must have at least one root in the interval (a, b). At each step the method divides the interval in two parts/halves by computing the midpoint c = (a+b) / 2 of the interval and the value of the function f(c) at that point.

  7. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    If the multiplicity m of the root is finite then g(x) = ⁠ f(x) / f ′ (x) ⁠ will have a root at the same location with multiplicity 1. Applying Newton's method to find the root of g(x) recovers quadratic convergence in many cases although it generally involves the second derivative of f(x).

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Golden-section search - Wikipedia

    en.wikipedia.org/wiki/Golden-section_search

    The golden-section search is a technique for finding an extremum (minimum or maximum) of a function inside a specified interval. For a strictly unimodal function with an extremum inside the interval, it will find that extremum, while for an interval containing multiple extrema (possibly including the interval boundaries), it will converge to one of them.