Search results
Results from the WOW.Com Content Network
Electrohydrodynamics deals with interaction of electromagnetic fields with weakly conductive fluids [486] and ferrohydrodynamics deals with interaction of electromagnetic fields with magnetic fluids. Today magnetohydrodynamics and its related fields have many applications in plasma physics , electrical engineering , mechanical engineering ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
Electrostatic induction, separation of charges due to electric fields. Permittivity and relative permittivity , the electric polarizability of materials. Quantization of charge , the charge units carried by electrons or protons.
Using an electroscope to show electrostatic induction. The device has leaves/needle that become charged when introducing a charged rod to it. The leaves bend the leave/needle, and the stronger the static introduced, the more bending occurs. However, the induction effect can also be used to put a net charge on an object.
Eddy currents in conductors of non-zero resistivity generate heat as well as electromagnetic forces. The heat can be used for induction heating. The electromagnetic forces can be used for levitation, creating movement, or to give a strong braking effect. Eddy currents can also have undesirable effects, for instance power loss in transformers.
When a conductor such as a wire attached to a circuit moves through a magnetic field, an electric current is induced in the wire due to Faraday's law of induction. The current in the wire can have two possible directions. Fleming's right-hand rule gives which direction the current flows.
Any perfect conductor will prevent any change to magnetic flux passing through its surface due to ordinary electromagnetic induction at zero resistance. However, the Meissner effect is distinct from this: when an ordinary conductor is cooled so that it makes the transition to a superconducting state in the presence of a constant applied ...
In electromagnetic waves, the skin depth is the depth at which the amplitude of the electric and magnetic fields have reduced by . [21] The intensity of the wave is proportional to the square of the amplitude, and thus the depth at which the intensity has diminished by 1 e {\displaystyle {\frac {1}{e}}} is δ 2 . {\displaystyle {\frac {\delta ...