enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantifier (logic) - Wikipedia

    en.wikipedia.org/wiki/Quantifier_(logic)

    For example, in Zermelo–Fraenkel set theory, variables range over all sets. In this case, guarded quantifiers can be used to mimic a smaller range of quantification. Thus in the example above, to express For every natural number n, n·2 = n + n. in Zermelo–Fraenkel set theory, one would write For every n, if n belongs to N, then n·2 = n + n,

  3. Logic of graphs - Wikipedia

    en.wikipedia.org/wiki/Logic_of_graphs

    In particular the logical depth of a graph is defined to be the minimum level of nesting of quantifiers (the quantifier rank) in a sentence defining the graph. [17] The sentence outlined above nests the quantifiers for all of its variables, so it has logical depth n + 1 {\displaystyle n+1} .

  4. Bounded quantifier - Wikipedia

    en.wikipedia.org/wiki/Bounded_quantifier

    For example, there is a definition of primality using only bounded quantifiers: a number n is prime if and only if there are not two numbers strictly less than n whose product is n. There is no quantifier-free definition of primality in the language ,, +,, <, = , however. The fact that there is a bounded quantifier formula defining primality ...

  5. Conditional quantifier - Wikipedia

    en.wikipedia.org/wiki/Conditional_quantifier

    For example, the quantifier ∀ A, which can be viewed as set-theoretic inclusion, satisfies all of the above except [symmetry]. Clearly [symmetry] holds for ∃ A while e.g. [contraposition] fails. A semantic interpretation of conditional quantifiers involves a relation between sets of subsets of a given structure—i.e. a relation between ...

  6. Existential quantification - Wikipedia

    en.wikipedia.org/wiki/Existential_quantification

    In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃ x " or " ∃( x ...

  7. Mathematical logic - Wikipedia

    en.wikipedia.org/wiki/Mathematical_logic

    In this logic, quantifiers may only be nested to finite depths, as in first-order logic, but formulas may have finite or countably infinite conjunctions and disjunctions within them. Thus, for example, it is possible to say that an object is a whole number using a formula of L ω 1 , ω {\displaystyle L_{\omega _{1},\omega }} such as

  8. Higher-order logic - Wikipedia

    en.wikipedia.org/wiki/Higher-order_logic

    In mathematics and logic, a higher-order logic (abbreviated HOL) is a form of logic that is distinguished from first-order logic by additional quantifiers and, sometimes, stronger semantics. Higher-order logics with their standard semantics are more expressive, but their model-theoretic properties are less well-behaved than those of first-order ...

  9. Second-order logic - Wikipedia

    en.wikipedia.org/wiki/Second-order_logic

    Second-order quantification is especially useful because it gives the ability to express reachability properties. For example, if Parent(x, y) denotes that x is a parent of y, then first-order logic cannot express the property that x is an ancestor of y.