enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  3. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    Finding roots in a specific region of the complex plane, typically the real roots or the real roots in a given interval (for example, when roots represents a physical quantity, only the real positive ones are interesting). For finding one root, Newton's method and other general iterative methods work generally well.

  4. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    The n th roots of unity form under multiplication a cyclic group of order n, and in fact these groups comprise all of the finite subgroups of the multiplicative group of the complex number field. A generator for this cyclic group is a primitive n th root of unity. The n th roots of unity form an irreducible representation of any cyclic group of ...

  5. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.

  6. Characteristic equation (calculus) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_equation...

    If the characteristic equation has a root r 1 that is repeated k times, then it is clear that y p (x) = c 1 e r 1 x is at least one solution. [1] However, this solution lacks linearly independent solutions from the other k − 1 roots. Since r 1 has multiplicity k, the differential equation can be factored into [1]

  7. Complex conjugate root theorem - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate_root_theorem

    It follows from the present theorem and the fundamental theorem of algebra that if the degree of a real polynomial is odd, it must have at least one real root. [2] This can be proved as follows. Since non-real complex roots come in conjugate pairs, there are an even number of them; But a polynomial of odd degree has an odd number of roots;

  8. Norman L. Biggs - Wikipedia

    en.wikipedia.org/wiki/Norman_L._Biggs

    London Math. Soc. 34 (2002) 129–139. 'Chromatic polynomials and representations of the symmetric group', Linear Algebra and its Applications 356 (2002) 3–26. 'Equimodular curves', Discrete Mathematics 259 (2002) 37–57. 2004 'Algebraic methods for chromatic polynomials' (with M H Klin and P Reinfeld), Europ. J. Combinatorics 25 (2004) 147 ...

  9. Numerical analysis - Wikipedia

    en.wikipedia.org/wiki/Numerical_analysis

    Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt to find approximate solutions of problems rather than the exact ones.