Search results
Results from the WOW.Com Content Network
Quicksort is an efficient, general-purpose sorting algorithm.Quicksort was developed by British computer scientist Tony Hoare in 1959 [1] and published in 1961. [2] It is still a commonly used algorithm for sorting.
The solution to this problem is of interest for designing sorting algorithms; in particular, variants of the quicksort algorithm that must be robust to repeated elements may use a three-way partitioning function that groups items less than a given key (red), equal to the key (white) and greater than the key (blue). Several solutions exist that ...
qsort is a C standard library function that implements a sorting algorithm for arrays of arbitrary objects according to a user-provided comparison function. It is named after the "quicker sort" algorithm [1] (a quicksort variant due to R. S. Scowen), which was originally used to implement it in the Unix C library, although the C standard does not require it to implement quicksort.
In computer science, quickselect is a selection algorithm to find the kth smallest element in an unordered list, also known as the kth order statistic.Like the related quicksort sorting algorithm, it was developed by Tony Hoare, and thus is also known as Hoare's selection algorithm. [1]
External sorting is a class of sorting algorithms that can handle massive amounts of data. External sorting is required when the data being sorted do not fit into the main memory of a computing device (usually RAM ) and instead they must reside in the slower external memory , usually a disk drive .
Multi-key quicksort, also known as three-way radix quicksort, [1] is an algorithm for sorting strings.This hybrid of quicksort and radix sort was originally suggested by P. Shackleton, as reported in one of C.A.R. Hoare's seminal papers on quicksort; [2]: 14 its modern incarnation was developed by Jon Bentley and Robert Sedgewick in the mid-1990s. [3]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The divide-and-conquer technique is the basis of efficient algorithms for many problems, such as sorting (e.g., quicksort, merge sort), multiplying large numbers (e.g., the Karatsuba algorithm), finding the closest pair of points, syntactic analysis (e.g., top-down parsers), and computing the discrete Fourier transform .