Search results
Results from the WOW.Com Content Network
An illustration of the complex plane. The imaginary numbers are on the vertical coordinate axis. Although the Greek mathematician and engineer Heron of Alexandria is noted as the first to present a calculation involving the square root of a negative number, [6] [7] it was Rafael Bombelli who first set down the rules for multiplication of complex numbers in 1572.
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.
x is the argument of the complex number (angle between line to point and x-axis in polar form). The notation is less commonly used in mathematics than Euler's formula, e ix, which offers an even shorter notation for cos x + i sin x, but cis(x) is widely used as a name for this function in software libraries.
Geometry of Complex Numbers is an undergraduate textbook on geometry, whose topics include circles, the complex plane, inversive geometry, and non-Euclidean geometry. It was written by Hans Schwerdtfeger , and originally published in 1962 as Volume 13 of the Mathematical Expositions series of the University of Toronto Press .
In mathematics, the complexification of a vector space V over the field of real numbers (a "real vector space") yields a vector space V C over the complex number field, obtained by formally extending the scaling of vectors by real numbers to include their scaling ("multiplication") by complex numbers.
Olariu, Silviu (2002) Complex Numbers in N Dimensions, Chapter 1: Hyperbolic Complex Numbers in Two Dimensions, pages 1–16, North-Holland Mathematics Studies #190, Elsevier ISBN 0-444-51123-7. Poodiack, Robert D. & Kevin J. LeClair (2009) "Fundamental theorems of algebra for the perplexes", The College Mathematics Journal 40(5):322–35.
Quadratic polynomials have the following properties, regardless of the form: It is a unicritical polynomial, i.e. it has one finite critical point in the complex plane, Dynamical plane consist of maximally 2 basins: basin of infinity and basin of finite critical point ( if finite critical point do not escapes)