enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Constitutive equation - Wikipedia

    en.wikipedia.org/wiki/Constitutive_equation

    The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.

  3. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  4. Elasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Elasticity_(physics)

    This relationship is known as Hooke's law. A geometry-dependent version of the idea [a] was first formulated by Robert Hooke in 1675 as a Latin anagram, "ceiiinosssttuv". He published the answer in 1678: "Ut tensio, sic vis" meaning "As the extension, so the force", [5] [6] a linear relationship commonly referred to as Hooke's law.

  5. Spring (device) - Wikipedia

    en.wikipedia.org/wiki/Spring_(device)

    In classical physics, a spring can be seen as a device that stores potential energy, specifically elastic potential energy, by straining the bonds between the atoms of an elastic material. Hooke's law of elasticity states that the extension of an elastic rod (its distended length minus its relaxed length) is linearly proportional to its tension ...

  6. Materials with memory - Wikipedia

    en.wikipedia.org/wiki/Materials_with_memory

    The study of these materials arises from the pioneering articles of Ludwig Boltzmann [1] [2] and Vito Volterra, [3] [4] in which they sought an extension of the concept of an elastic material. [5] The key assumption of their theory was that the local stress value at a time t depends upon the history of the local deformation up to t.

  7. Anelasticity - Wikipedia

    en.wikipedia.org/wiki/Anelasticity

    Anelasticity is a property of materials that describes their behaviour when undergoing deformation.Its formal definition does not include the physical or atomistic mechanisms but still interprets the anelastic behaviour as a manifestation of internal relaxation processes.

  8. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    Note that not all elastic materials undergo linear elastic deformation; some, such as concrete, gray cast iron, and many polymers, respond in a nonlinear fashion. For these materials Hooke's law is inapplicable. [2] Difference in true and engineering stress-strain curves

  9. Bulk modulus - Wikipedia

    en.wikipedia.org/wiki/Bulk_modulus

    For a complex anisotropic solid such as wood or paper, these three moduli do not contain enough information to describe its behaviour, and one must use the full generalized Hooke's law. The reciprocal of the bulk modulus at fixed temperature is called the isothermal compressibility .