Search results
Results from the WOW.Com Content Network
The Saturn V reached 400 feet per second (120 m/s) at over 1 mile (1,600 m) in altitude. Much of the early portion of the flight was spent gaining altitude, with the required velocity coming later. The Saturn V broke the sound barrier at just over 1 minute at an altitude of between 3.45 and 4.6 miles (5.55 and 7.40 km). At this point, shock ...
During their two and a half minutes of operation, the five F-1s propelled the Saturn V vehicle to a height of 42 miles (222,000 ft; 68 km) and a speed of 6,164 mph (9,920 km/h). The combined flow rate of the five F-1s in the Saturn V was 3,357 US gal (12,710 L) [5] or 28,415 lb (12,890 kg) per second.
The J-2, commonly known as Rocketdyne J-2, was a liquid-fuel cryogenic rocket engine used on NASA's Saturn IB and Saturn V launch vehicles. Built in the United States by Rocketdyne, the J-2 burned cryogenic liquid hydrogen (LH 2) and liquid oxygen (LOX) propellants, with each engine producing 1,033.1 kN (232,250 lb f) of thrust in vacuum.
Apollo 8, Saturn V with 810,700 litres of RP-1 and 1,311,100 liters of LOX in the S-IC first stage [1] RP-1 is a fuel in the first-stage boosters of the Electron, Soyuz, Zenit, Delta I-III, Atlas, Falcon, Antares, and Tronador II rockets. It also powered the first stages of the Energia, Titan I, Saturn I and IB, and Saturn V.
The S-II (pronounced "S-two") was the second stage of the Saturn V rocket. It was built by North American Aviation. Using liquid hydrogen (LH2) and liquid oxygen (LOX) it had five J-2 engines in a quincunx pattern. The second stage accelerated the Saturn V through the upper atmosphere with 1,000,000 pounds-force (4.4 MN) of thrust.
The S-IC (pronounced S-one-C [3] [4]) was the first stage of the American Saturn V rocket. The S-IC stage was manufactured by the Boeing Company. Like the first stages of most rockets, more than 90% of the mass at launch was propellant, in this case RP-1 rocket fuel and liquid oxygen (LOX) oxidizer. It was 42 m (138 ft) tall and 10 m (33 ft) in ...
As with all kinds of engines, there are many engineering choices and tradeoffs that affect specific impulse. Nonlinear air resistance and the engine's inability to keep a high specific impulse at a fast burn rate are limiting factors to the fuel consumption rate.
Where is the burn time in seconds, is the instantaneous thrust in newtons, is average thrust in newtons, and is the total impulse in newton seconds. Class A is from 1.26 newton-seconds (conversion factor 4.448 N per lb. force) to 2.5 N·s, and each class is then double the total impulse of the preceding class, with Class B being 2.51 to 5.00 N·s.