Search results
Results from the WOW.Com Content Network
A sound attenuator, or duct silencer, sound trap, or muffler, is a noise control acoustical treatment of Heating Ventilating and Air-Conditioning (HVAC) ductwork designed to reduce transmission of noise through the ductwork, either from equipment into occupied spaces in a building, or between occupied spaces.
An Alesis Micro Gate noise gate. A noise gate or simply gate is an electronic device or software that is used to control the volume of an audio signal.Comparable to a limiter, which attenuates signals above a threshold, such as loud attacks from the start of musical notes, noise gates attenuate signals that register below the threshold. [1]
Acoustic attenuation in water is frequency-squared dependent, namely =. Acoustic attenuation in many metals and crystalline materials is frequency-independent, namely =. [10] In contrast, it is widely noted that the of viscoelastic materials is between 0 and 2.
A T-pad attenuator formed from two symmetrical L sections. Because of the symmetry, R 1 = R 3 in this case. For an attenuator, Z and Y are simple resistors and γ becomes the image parameter attenuation (that is, the attenuation when terminated with the image impedances) in nepers. A T pad can be viewed as being two L sections back-to-back as ...
The L pad attenuates the signal by having two separate rheostats connected in an "L" configuration (hence the name). One rheostat is connected in series with the loudspeaker and, as the resistance of this rheostat increases, less power is coupled into the loudspeaker and the loudness of sound produced by the loudspeaker decreases.
Again, all resistor values of the circuit diagram follow easily after choosing values for N, and R source. (The value of R load does not influence the logarithmic behavior). For example, with a R load of 1 kΩ, and 1 dB attenuation, the resistor values would be: R a = 108.7 Ω, R b = 8195.5 Ω.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The attenuation coefficient is = / (), following Stokes' law (sound attenuation). This effect is more intense at elevated frequencies and is much greater in air (where attenuation occurs on a characteristic distance α − 1 {\displaystyle \alpha ^{-1}} ~10 cm at 1 MHz) than in water ( α − 1 {\displaystyle \alpha ^{-1}} ~100 m at 1 MHz).