Search results
Results from the WOW.Com Content Network
Python uses the following syntax to express list comprehensions over finite lists: S = [ 2 * x for x in range ( 100 ) if x ** 2 > 3 ] A generator expression may be used in Python versions >= 2.4 which gives lazy evaluation over its input, and can be used with generators to iterate over 'infinite' input such as the count generator function which ...
In computer programming, foreach loop (or for-each loop) is a control flow statement for traversing items in a collection. foreach is usually used in place of a standard for loop statement.
In computer science, a for-loop or for loop is a control flow statement for specifying iteration. Specifically, a for-loop functions by running a section of code repeatedly until a certain condition has been satisfied. For-loops have two parts: a header and a body. The header defines the iteration and the body is the code executed once per ...
Specifically, the for loop will call a value's into_iter() method, which returns an iterator that in turn yields the elements to the loop. The for loop (or indeed, any method that consumes the iterator), proceeds until the next() method returns a None value (iterations yielding elements return a Some(T) value, where T is the element type).
In some programming languages (including Ada, Perl, Ruby, Apache Groovy, Kotlin, Haskell, and Pascal), a shortened two-dot ellipsis is used to represent a range of values given two endpoints; for example, to iterate through a list of integers between 1 and 100 inclusive in Perl: foreach (1..100)
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
The name read–eval–print loop comes from the names of the Lisp primitive functions which implement this functionality: The read function accepts an expression from the user, and parses it into a data structure in memory. For instance, the user may enter the s-expression (+ 1 2 3), which is parsed into a linked list containing four data ...
Under Unix, the "everything is a file" paradigm naturally leads to a file-based event loop. Reading from and writing to files, inter-process communication, network communication, and device control are all achieved using file I/O, with the target identified by a file descriptor .